#### SNR IMPACTS THE ACCURACY AND PRECISION OF KNEE ARTICULAR CARTILAGE **T2 RELAXATION TIME MEASUREMENTS**

#### B.J. Dardzinski<sup>1</sup>, E. Schneider<sup>2</sup>

<sup>1</sup>Merck Sharp & Dohme Corp., West Point, PA USA <sup>2</sup>Imaging Institute, Cleveland Clinic, Cleveland, OH USA and SciTrials LLC, Rocky River, OH

The authors have no conflicts with the work reported in this study.

### **MRI** Assessments of Cartilage

- Morphological MRI
  - Insensitive to early stage cartilage lesions
  - Outerbridge I softening / swelling
  - Unexposed (no risk) and Incidence (at risk, no symptoms or ROA) have equal incidence of early defects (WORMS <5)</li>
- T2
  - collagen integrity, [GAG], orientation dependent
- T1 (dGEMRIC)
  - [GAG] charge-based, orientation independent
- T1rho
  - collagen integrity, [GAG], orientation dependent (less than T2)

# T2 Assessments

- Are not absolute
- Values are:
  - Spatially dependent
    - Knee positioning (magic angle)
    - Cartilage plate
    - Cartilage zone
  - MR System Dependent
    - Magnetic Field Strength
    - Refocusing flip angle
    - Acquisition sequence
    - Analysis method
    - Image noise, particularly last echo

# Introduction

- OAI opted for 3T
  - Increased SNR allowed higher spatial resolution
- In 2003:
  - Not many 3T MR systems
  - Only one knee coil (USAI)
  - However other options in development
  - Pilot study to evaluate impact two different knee coils
    - Similar transmit design (similar excitation / refocusing pulses)
    - Different detection design (different SNR)





|   | SN                | R 1.5     | 5T ' | vs.         | 3T    |            |       |       |
|---|-------------------|-----------|------|-------------|-------|------------|-------|-------|
|   |                   |           | SNB  | (BW =       | 125)  | SNB        | (BW = | 250)  |
|   |                   | ROI       | 1.5T | 3T          | Ratio | 1.5T       | 3T    | Ratio |
|   | $\langle \rangle$ | Bone      | 53   | 109         | 2.1   | 61         | 95    | 1.6   |
|   | V                 | Cartilage | 22   | 46          | 2.1   | 29         | 45    | 1.6   |
|   | ( )               | Fat       | 74   | 132         | 1.8   | 84         | 112   | 1.3   |
|   |                   | Muscle    | 26   | 42          | 1.6   | 31         | 44    | 1.4   |
| 0 | 1                 |           | SN   | <b>(R</b> = | = \   | $S/\sigma$ | n     |       |



| T2 Comparison |         |         |  |  |  |  |
|---------------|---------|---------|--|--|--|--|
| ROI           | 1.5T    | 3T      |  |  |  |  |
| Bone          | 123 ± 5 | 122 ± 7 |  |  |  |  |
| Cartilage     | 50 ± 6  | 43 ± 5  |  |  |  |  |
| Muscle        | 39 ± 4  | 38 ± 6  |  |  |  |  |
| Fat           | 123 ± 9 | 128 ± 6 |  |  |  |  |



# QTR vs. QT8PAR



Inner height Inner width Inner Circumference Equivalent diameter

180 mm 190 mm 580 mm 184 mm



| Min inner height        | 130 mm |
|-------------------------|--------|
| Min inner width         | 140 mm |
| Inner Circumference     | 420 mm |
| Equivalent diameter     | 134 mm |
| Thigh/Calf inner height | 180 mm |
| Thigh/Calf inner width  | 185 mm |













































| Findings                                                                                                                                                                                                                                                                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>SNR higher in QT8PAR</li> <li>Global T2 longer with QT8PAR <ul> <li>cMF (45.9ms/50.7ms)</li> <li>MT (41.6ms/48.2ms)</li> <li>muscle (37.9ms/40.7ms)</li> </ul> </li> <li>T2 precision better with QT8PAR <ul> <li>cLF, cMF, and infrapatellar fat</li> </ul> </li> </ul> |  |

# Findings

- Due to anatomy, T2 values differ spatially
   cLF has the longest value (52ms)
  - LT has the shortest (40.6ms)
- SNR can vary spatially depending upon coil
- With higher SNR, significantly longer T2 values
   Deep cartilage T2 values were most affected
- T2 changes with SNR can be larger than the impact of changing magnetic field strength

# What does this mean for analyzing the OAI data?

- Same USAI QTR coils
  - Used from 2004 early 2012
- Failing quality assurance
  - No replacements have been available for past 2yrs
  - Replaced with InVivo QT8PAR
    - Spring 2012

### T2 Summary

- Monitors rotational freedom of water motion
- Sensitive to both collagen integrity, [GAG] in cartilage
  - hydration
- Orientation dependent
- Equipment, acquisition and analysis dependent
  - Analysis precision varies with plate and zone
     (0.5-2% RMS CV%)
  - Measurement precision varies with plate and zone
    - (3.3-10.9% RMS CV%)
  - Include quality control ROIs
  - Accommodate for noise in analysis

# T2 values are higher in disease, possibly sensitive to early OA

- Reversible (exercise)
- Small changes, 1-3ms
- Higher T2 in
  - Knee Pain
  - Cartilage or meniscal defects
  - Weaker quadriceps muscles
  - Increases with age, but no diff in rate of change with early OA

## T2 in Clinical Research

- Pair the acquisition and analysis
  - $-\,$  Ensure accuracy and sensitivity to change with phantoms
- Perform within subject comparisons for longitudinal change
- Use an intrinsic reference tissue (if possible)
  - Cartilage in a different compartment
  - No gold standard
- Tailor the acquisition to the clinical question
   cartilage repair vs. OA vs. deep cartilage change due to trauma
- Difficult to perform meta-analyses

## Acknowledgments

- The OAI and this pilot study are conducted and supported by NIAMS in collaboration with the OAI Investigators and Consultants
- The research reported in this abstract was supported in part by contracts N01-AR-2-2261, N01-AR-2-2262 and N01-AR-2-2258
- We are grateful to the Ohio State University and Memorial Hospital of Rhode Island OAI study teams for recruitment of the study subjects and acquisition of the MR exams