Evidence of Surrogacy – What Imaging Data Predicts the Development of Long-Term Clinical Outcomes

C. Kent Kwoh, MD Professor of Medicine, Epidemiology, and Clinical and Translational Science University of Pittsburgh School of Medicine

No Conflicts of Interest Related to this presentation to Disclose

Knee Replacement (KR) as a Long-term Clinical Endpoint

Pros:

- Cost-effective procedure with excellent long-term outcomes.
- May be considered as "final disease stage" (i.e., joint death) and is associated with marked pain, greater disability and decreased quality of life
- Exponential increase in KRs with an estimated 3 million/year in the US by 2030
- KR is a very expensive procedure and prevention of KR would have major socioeconomic impact

Cons:

- No clear consensus on indications for KR, but imaging biomarkers may help in the clinical decision making for patients as well use of KR as an outcome measure for clinical studies and clinical trials.
- May be dependent on non-clinical factors such as patients' and providers' preferences as well as access issues such as insurance status

Relationship Between Tibial Cartilage Loss Over Two Years and Subsequent Knee Replacement

	Number of knee replacements (%)	OR	Adjusted OR (95% CI)*†
ate of tibial cartilage loss <3% per annum (n=37)	3 (8.1)	1	:
ate of tibial cartilage loss 3-8% per annum (n=40)	7 (17.5)	2.4	2.3 (04. to 12.2
ate of tibial cartilage loss >8% per annum (n=38)	8 (22.2)	3.2	7.1 (1.4 to 36.5

*Multivariate logistic regression adjusting for age, gender, BMI, % tibial cartilage loss, WOMAC score and bone size. † p=0.02 for trend

123 participants, 24 month f/u, 18 KR after 48M

Cicuttini, et al. ARD 2004, Table 4

Relationship Between Bone Marrow Edema and Knee Replacement

	OR*	95% CI
BME of any pattern vs. No BME	8.95	1.49-53.68
Global BME vs. No BME	13.04	2.06-82.58
Global BME vs. all other patterns	5.45	1.02-28.96
*Controlled for age		

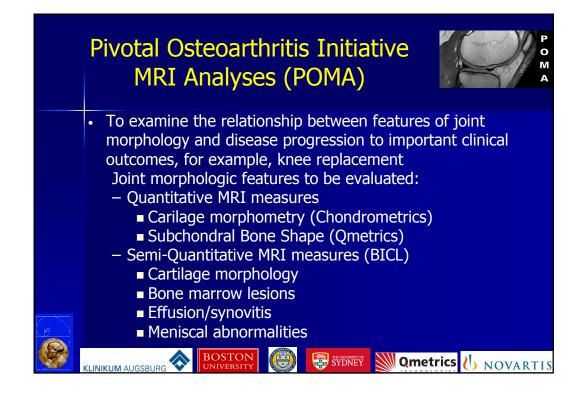
Database of 4000 MRIs, 235 cases reviewed

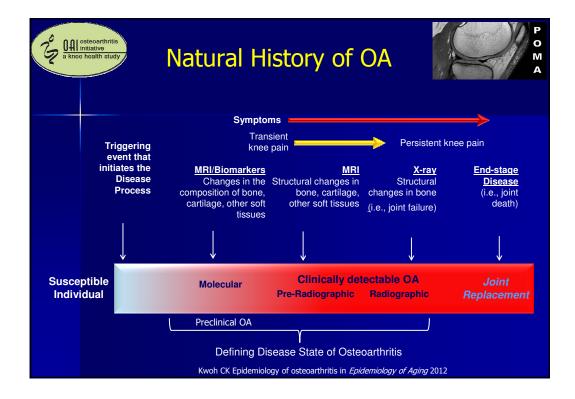
25 OA only and 48 OA & BML, 3 year f/u, 15 KR

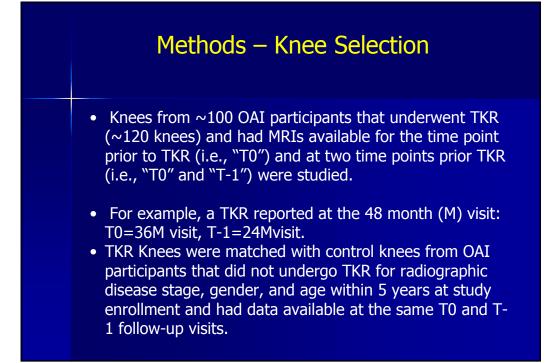
Scher, et al. Skeletal Radiology 2008, Table 6

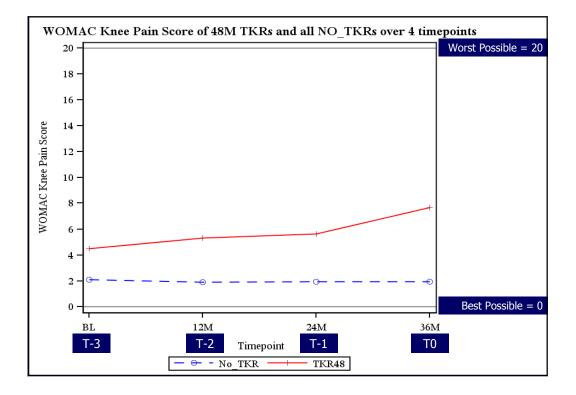
Tibiofemoral BMLs	Multivariate odds ratio (95% CI)*	p-value
Total tibiofemoral BMLs	1.57 (1.04, 2.35)	0.03
Medial tibiofemoral BMLs	1.78 (1.16, 2.74)	0.01
Lateral tibiofemoral BMLs	0.82 (0.43, 1.54)	0.54
*/	Adjusted for age, gender and	KL grade.
	Multivariate analysis aOR (95% CI)	
Medial TF compartment	1.99 (1.01 to 3.90)	0.0
Lateral TF compartment	0.96 (0.48 to 1.94)	0.9

lationchin Rotwoon

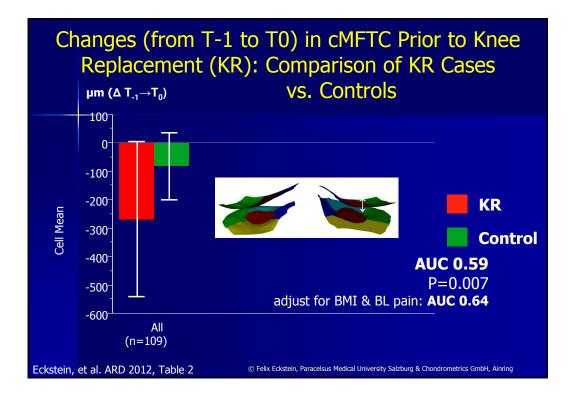

Popo

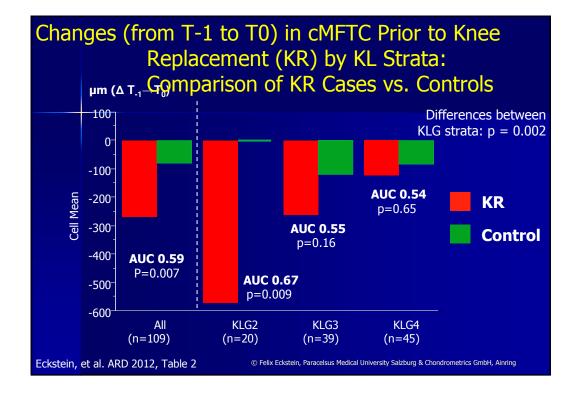

Marrow

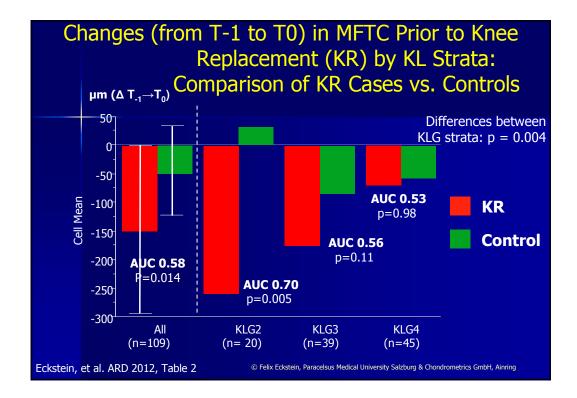

Effort


of Incroo

Relationship Between Bone Marrow Lesions (Right Knee) and Knee Replacement OR (95% CI) p-value Left knee replacement (n=7)BML severity (0 to 8) 2.78 (1.58, 4.90) <0.01† BML presence/absence 12.85 (1.82, 90.91) 0.011† Right knee replacement (n=8)BML severity (0 to 8) 2.88 (1.84, 4.52) < 0.01+ BML presence/absence # 22.63 (3.72, α) <0.01† Knee replacement right and left (n=12)BML severity (0 to 8) 2.10 (1.13, 3.90) 0.019 ± BML presence/absence 5.67 (0.62, 51.77) 0.124‡ # Using exact logistic regression because all 8 subjects who had right knee replacement had a BML present; † Adjusted for age and sex; ‡ Further adjusted for body mass index, knee pain, leg strength, cartilage defects, tibial bone area, and radiographic osteoarthritis Tasmanian Older Cohort (TASOAC) study Dore, et al. ART 2010, Table 5 205 E year flue 12 KD

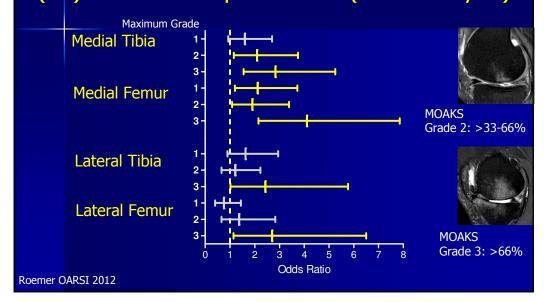


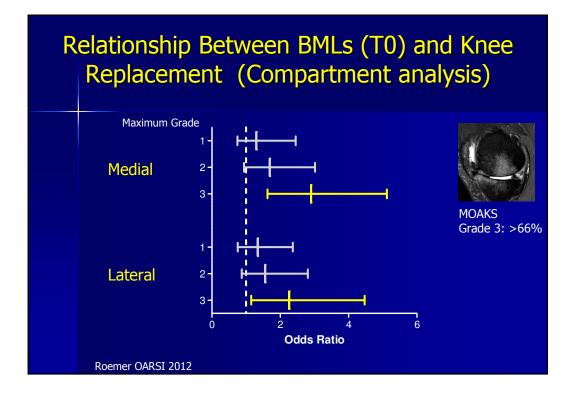


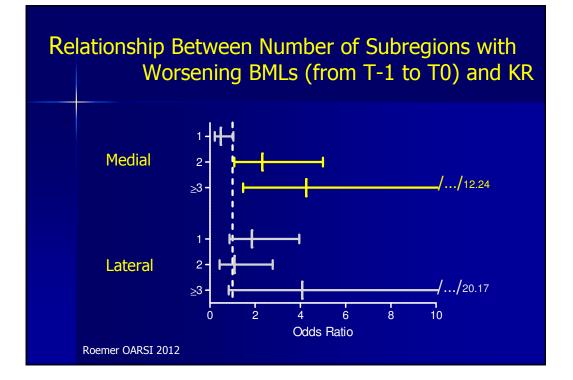


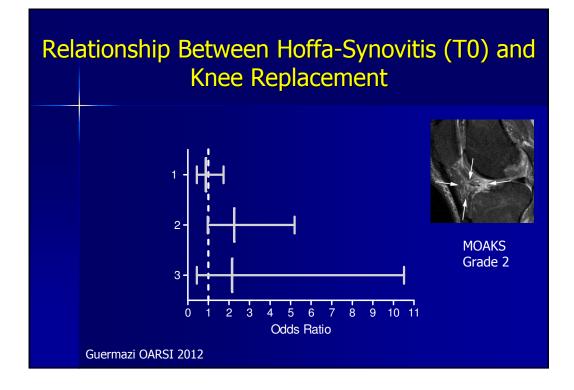
Cross-Sectional Differences (T0) in Quantitative Parameters of Femorotibial Cartilage Structure in Knees Undergoing KR vs. Controls

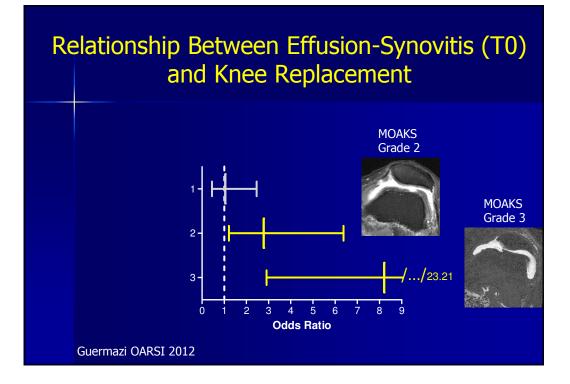
		Percent	25%	Median	75%	p-value			
	(Centra	I) medial cor	npartment						
	cMFTC	-42	-1.92	-0.56	0.63	0.0005			
	MFTC	-26	-1.20	-0.37	0.39	0.0013			
	Femorotibial cartilage plates								
	MF.ThC	-5	-0.42	-0.10	0.16	0.0167			
	cMF.ThC	-46	-0.82	-0.17	0.21	0.0009			
	cMF.VC	-30	-579	-91.8	227	0.0196			
	MT.dAB%	NA	0.00	2.95	19.04	0.0002			
	cMF.dAB%	1310	-2.52	0.00	38.97	< 0.0001			
	MT.tAB	4	-0.59	0.67	1.82	0.0011			
	cMF.tAB	7	-0.67	0.22	1.48	0.0296			
Eckstein,	et al. ARD 2012, Table 3								

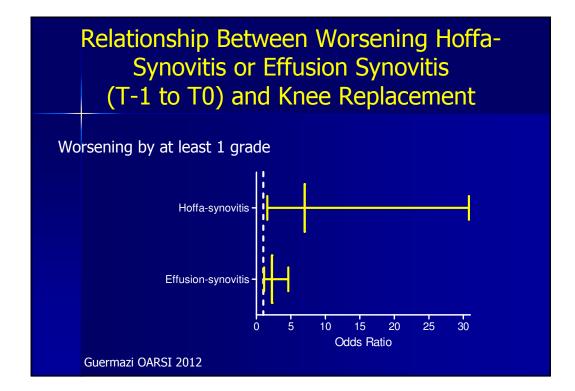


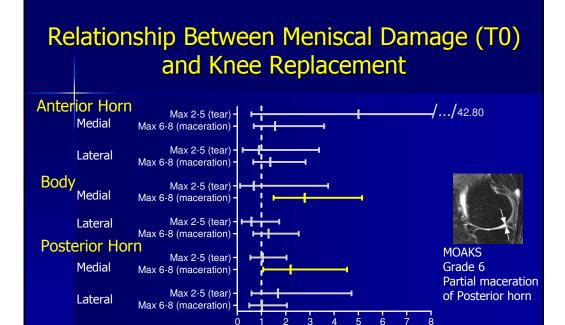


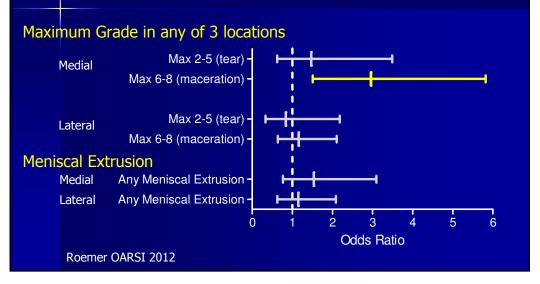


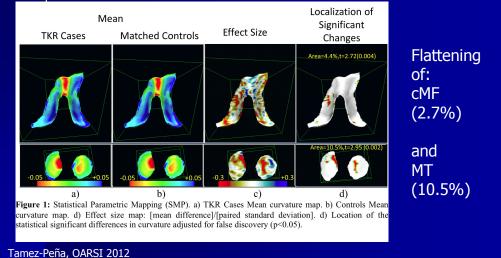

С	Changes (from T-1 to T0) in Other (Exploratory) Endpoints Prior to Knee Replacement (KR): Comparison of KR Cases vs. Controls						
		Thickness (ThCtAB)	Volume (VC)	Denuded area (dAB)			
	MT	0.005	0.01	0.01			
	cMF	0.10	0.06	0.04			
	LT	0.13	0.26	0.07			
	cLF	0.25	0.11	0.23			
				Wilcoxon Signed Rank Test			
Eckstein,	Eckstein, et al. ARD 2012, Table 2 © Felix Eckstein, Paracelsus Medical University Salzburg & Chondrometrics GmbH, Ainring						


Relationship Between Medial or Lateral BMLs (T0) and Knee Replacement (Plate Analysis)

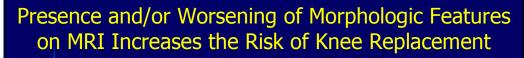


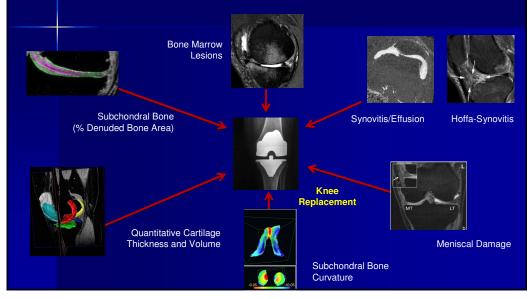


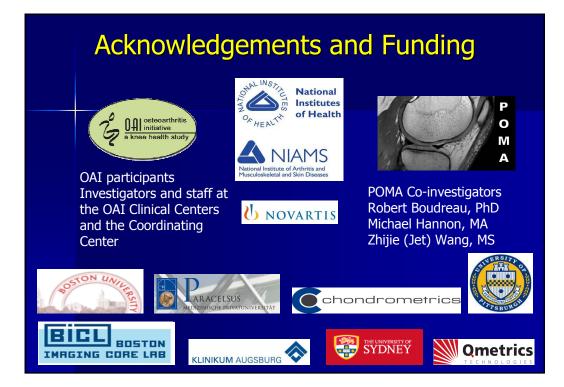


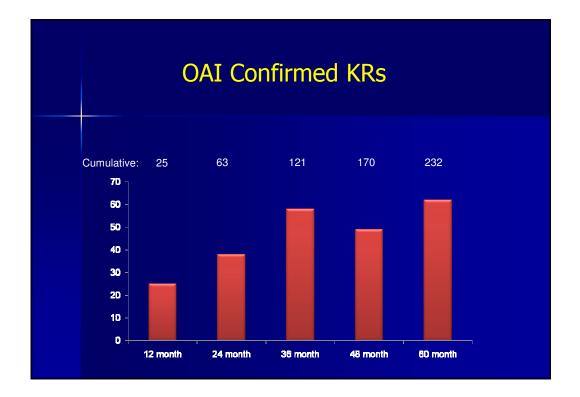

Roemer OARSI 2012

Odds Ratio




Statistical Parameter Mapping: Comparison of Mean Bone Curvature Between KR Cases and Controls




ROC Analysis of the Curvature of the Bone-Cartilage Interface: Comparison Between KR Cases and Controls

	(127)	Case-Control Pai	Matched Control (Gender, Age and cKLG)	Paired Difference	Curvature Adjusted ROC [Gender, Age, Height & KL]	T0 Logistic Model [Gender, KL, Age, BMI, Pain and Curvature]
	_	Mean (Std)	Mean (Std)	p-value	AUC(p-value)	AUC
	Femur	0.024(0.004)	0.025(0.004)	0.000	0.52(0.657)	0.77
	Entire	-0.008(0.006)	-0.009(0.004)	0.002	0.62(0.001)	0.76
	Ţįþia	0.024(0.006)	0.027(0.006)	0.000	0.66(0.000)	0.79
	cLF	0.025(0.004)	0.026(0.005)	0.036	0.57(0.066)	0.77
	MT	-0.009(0.007)	-0.012(0.005)	0.003	0.62(0.001)	0.77
Та	mez-Peña	OARSI 2012				

