

RESPONSIVENESS OF A SEMI-AUTOMATED NOVEL METHOD OF MEASURING CARTILAGE LOSS IN KNEE OSTEOARTHRITIS OVER TWO YEARS USING 3T DESS 3D MRI .

J. Duryea¹, C. Ratzlaff¹, T. Iranpour-Boroujeni¹, J. Collins¹, E. Losina¹, C. Vanwynngaarden², A. Guermazi³, J. Katz¹

¹Brigham and Women's Hosp. / Harvard Med. Sch., Boston, MA, ²Peace Arch Hosp., White Rock, BC, CANADA, ³Boston Univ. Sch. of Med., Boston, MA.

Motivation (OAI)

•38,337 individual 3D (DESS pulse sequence) MRI scans (BL - 48mo)

•These need to be read at some point.

•Assuming 1 hour/scan, total reader time is 24 years!

•Goal: Substantially reduce the reader time.

•At 5 minutes/knee...2 years total time.

Advantages of location Specific JSW

- Consistent definition of space for cross sectional and longitudinal studies
- Look at other structural measures (e.g. ROIs for bone texture measures)
- No need to fully delineate joint margins.

Validation Study

•24 subjects: OAI Progression Cohort (Data Set 0.1.1 and Image Releases 0.B.1 and 1.B.1.)

•K/L score of 3

•Time points: Baseline and 24 month visits.

•Pulse sequence: Siemens Trio 3T scanner using 3D DESS with water excitation

•Reader was blinded to time point.

Validation Study

Responsiveness measures:

•Average volume change (ΔV)

•Standard deviation of volume change (SD)

•Standardized response means SRM=ΔV/SD

Results (SRM values) $z_0 = 0.8, \theta_0 = 210^{\circ}$				
$\Delta z = 0.10$	$\Delta \theta = 100^{\circ}$	SRM = -0.71		
$\Delta z = 0.08$	$\Delta \theta = 80^{\circ}$	SRM = -0.66		
$\Delta z = 0.06$	$\Delta \theta = 60^{\circ}$	SRM = -0.55		
$\Delta z = 0.04$	$\Delta \theta = 40^{\circ}$	SRM = -0.60		
$\Delta z = 0.02$	$\Delta \theta = 20^{\circ}$	SRM = -0.39		

Results

•Method is fast: ~ 10 minutes/knee for the skilled reader

•Only a sub region requires attention

•Reader only has to segment a limited number of slices

•Excellent responsiveness for smaller region $(\Delta z = 0.04, \Delta \theta = 40^\circ)$ implies an even faster method.

•Limitation: probes a single region

Analysis model #2 Sample multiple fixed locations

Conclusions

Use of robust coordinate system provides responsive measure of cartilage change
Method is fast. Potential to assess over 1,000 knees.
Can be used to quantify additional structures

Acknowledgements

Jamie Collins Ali Guermazi Tannaz Iranpour-Boroujeni Jeffrey Katz Elena Losina Quinley Miao Charles Ratzlaff Case Vanwynngaarden

NIH/NIAMS: R01 AR056664 BWH Biomedical Research Institute (BRI)

Conclusions

General 3D gray scale intensity function to characterize every voxel in the image set.

$I=f(z, \theta, r)$

Analysis model #3

(Future study)

Pick an indexed location for each knee individually.