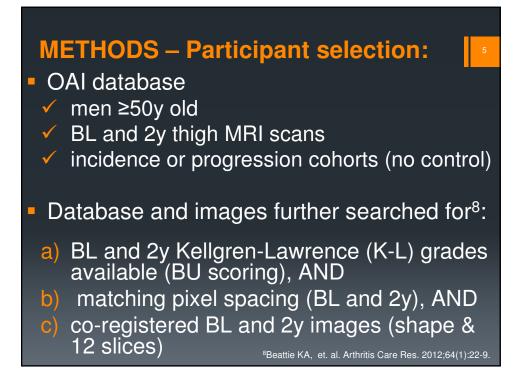
Quadriceps Muscle and Intermuscular Fat Volumes in the Thighs of Men in the OAI are Associated with Physical Function and Knee Pain

Karen A. Beattie, Monica R. Maly, Sami Shaker, Norma J. MacIntyre McMaster University, Hamilton, ON, Canada

BACKGROUND:

- Individuals with knee OA have lower quad muscle (QM) mass, strength vs. control¹⁻³
- Decreased muscle mass assoc'd with functional limitations, pain⁴⁻⁶
- Muscle mass assessed by volume, crosssectional area (CSA), MRI and CT
- Adipose tissue can also be quantified

¹Ikeda S. Orthop Sci. 2005;10(2):121-6. ²Petterson SC. Med Sci Sports Exerc. 2008;40(3):422-7. ³Liikavainio T. Arch Phys Med Rehabil. 2008;89(11):2185-94. ⁴Berger MJ. Interdiscip Top Gerontol. 2010;37:94-114. ⁵O'Reilly SC. AnnRheumDis. 1998;57(10):588-94. ⁶McAlindon TE. AnnRheumDis. 1993;52(4):258-62.


BACKGROUND:

- Role of adipose tissue in OA not well understood
- With aging, thigh intermuscular fat (IMF) CSA increases in men and women regardless of change in body mass⁷
- Assoc'n between IMF and physical function and symptoms in people with OA unknown

⁷Delmonico M. J. Am J Clin Nutr. 2009;90(6):1579-85.

OBJECTIVE:

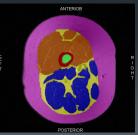
 To investigate the association between mid-thigh QM and IMF volumes and measures of physical performance/function and pain in men participating in the OAI

METHODS – MRI Scans:

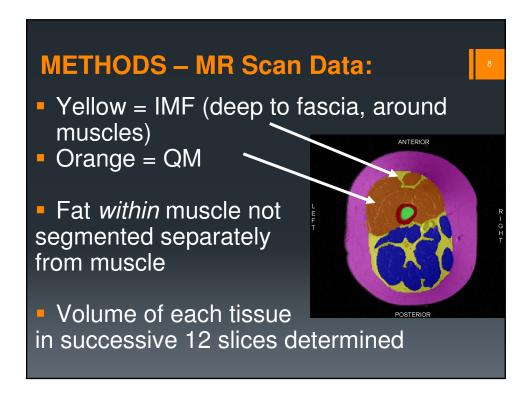
- 72 randomly selected scans analyzed
- T1-weighted axial scan
- 5mm slice thickness
- 15 slices
- Most distal slice =10 cm proximal to epiphyseal line of distal femur

 12 most proximal matching slices segmented

METHODS – Analysing MR Scans:


 Right thighs segmented - SliceOmatic v4.3 (TomoVision, Canada) using watershed algorithm⁸

Tissues "tagged" using colours

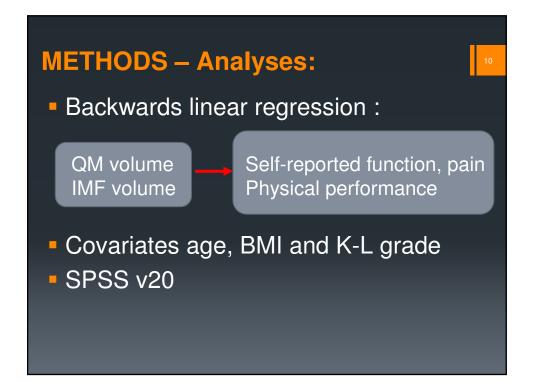

Segmentation of first slice

propagated forward, editedReliability (intra-, inter-rater)

ICC>0.98, RMSCV <5%⁸

⁸Beattie KA, et. al. Arthritis Care Res. 2012;64(1):22-9.

METHODS – Dependent Outcomes:


Data downloaded from OAI database:

<u>Self-report</u>

Function:
WOMAC Physical Function
KOOS Function in Sports and Recreation
Symptoms:
WOMAC pain (right knee)

Performance

- maximum extensor force (right leg)
- 20 m walk time

RESULTS:						
	Variable	Mean (SD)	Max. ¹¹			
	Age (years)	63.3 (8.1)				
	Body Mass Index (kg/m ²)	29.8 (4.1)				
	K-L Grades (N) 0 1 2 3 4	28 12 15 11 6				
	QM volume (cm ³)	362.1 (65.1)				
	IMF volume (cm ³)	121.4 (35.4)				
ſ	WOMAC physical function	8.7 (10.5)	68 😕			
Self-Report	KOOS function sport & rec	62.9 (28.8)	100 😃			
	WOMAC pain (right)	2.7 (3.1)	20 😕			
Performance -	Max. ext. strength (right) (N)	442.1 (138.9)				
	20 metre walk time (s)	15.6 (2.3)				

RESULTS:				
		Unstandardized β (p-value)	Standardized β (p-value)	
<u>Self-report</u> <u>Function</u> WOMAC Phys. Fun. KOOS Sport/Rec	IMF IMF	0.119 -0.261	0.400 (0.001) -0.330 (0.030)	
<u>Symptoms</u> WOMAC pain (right)	IMF	0.026	0.293 (0.011)	
Performance max ext. force (right) 20 m walk time Age, BMI, K-L grade co	QM IMF ovariate	1.425 0.019 es not significant	0.650 (0.001) 0.290 (0.013)	

LIMITATIONS:

- Did not assess whether excluded participants were "different" than those included
- Variability in location of thigh ROI
- Unable to measure intramuscular fat
- Data are cross-sectional no indication of change over time (yet)

DISCUSSION:

- IMF volume significantly, weakly associated with physical function & performance
 - consistent with healthy aging¹⁰⁻¹²
 - consistent with women
- Knee extensor force
 - not associated with IMF volume¹³
 - associated with QM volume and CSA¹³, not K-L grade
- QM not assoc'd with function/performance

¹⁰Goodpaster B. J Appl Physiol. 2001;90:2157-65. ¹¹Visser M. J Am Geriatr Soc. 2002;50:897-904.¹²Kidde J. Physiother Can. 2009;61:197-209. ¹³Segal NA. PM & R 2011;3(4):314-23. 13.

FUTURE DIRECTIONS:

- 15
- quantify longitudinal changes in IMF and QM volume, compare with women and across K-L grades
- clinical relevance of changes in IMF
- association between IMF and cartilage morphometry, JSN

Acknowledgements

- OAI investigators, OAI co-ordinating centre
- USBJD Young Investigators' Initiative

Funding Sources

- Canadian Arthritis Network
- National Science and Engineering Research Council of Canada