Imaging in Osteoarthritis Clinical Trials: Metrics and endpoints Medical Imaging

Colin G. Miller Ph.D., FICR Csci

SVP Medical Affairs
colin.miller@bioclinica.com
Agenda

- Uses of Medical Imaging
- Imaging Requirements
 - The metrics of measurements
- Conclusions
Uses of Medical Imaging

• *Diagnosis*

• *Prognosis*

• *Monitoring therapy*

• *Monitoring Natural History of Disease*
Imaging Requirements

- **Diagnostic Sensitivity**
- **Precision/Accuracy**
- **Reliability**
- **Relevance**
- **Cost effective**
- **Acceptance by regulatory agencies**
- **Acceptability to Subject**
- **Safety to subject and operator**

Bone density measurements in clinical trials: the challenge of ensuring optimal data; Miller CG, Br. J Clin Res. 1993 Vol. 4, p. 113-120
Diagnostic Sensitivity
Normal - Abnormal Difference

<table>
<thead>
<tr>
<th>Normal</th>
<th>Diseased</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal</th>
<th>Elderly</th>
<th>Diseased</th>
</tr>
</thead>
</table>
ROC Analysis

- **Sensitivity** - True Positive
- **Specificity** – False positive

<table>
<thead>
<tr>
<th>Predicted Outcome</th>
<th>Actual Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>True +ve</td>
<td>False +ve</td>
</tr>
<tr>
<td>False -ve</td>
<td>True -ve</td>
</tr>
</tbody>
</table>
Imaging Requirements

• *Diagnostic Sensitivity*
• *Precision/Accuracy*
• *Reliability*
• *Relevance*
• *Cost effective*
• *Acceptance by regulatory agencies*
• *Acceptability to Subject*
• *Safety to subject and operator*
Accuracy

Standard error of the estimate of linear regression between actual and measured parameter

i.e., when correctly calibrated, the measured result is close to the actual value
Precision

Standard deviation of the difference between pairs of repeat measurements, usually expressed as a percentage of the average value (coefficient of variation), i.e., the reproducibility of the measurement. When repeating a measurement of the same object under the same circumstances, how similar are the results?
Precision

Measured as coefficient of variation:

\[\%C.V. = \frac{S.D.}{\text{Mean}} \]

Standardized Coefficient of Variation:

\[\text{S.C.V.} = \frac{S.D.}{\text{Mean}} \times \frac{\text{Mean}}{\text{Normal Range}} = \frac{S.D.}{\text{Normal Range}} \]

NB: Normal range = 5%-95%

MillerCG et al Osteo Int 1993
Imaging Requirements

- **Diagnostic Sensitivity**
- **Precision/Accuracy**
- **Reliability**
- **Relevance**
- **Cost effective**
- **Acceptance by regulatory agencies**
- **Acceptability to Subject**
- **Safety to subject and operator**
One Problem – Calibration drift
Reliability – Site Selection

• Subject recruitment

• Imaging Modalities
 – X-ray – How to standardize?
 – MRI 1.5T or 3.0T?

• Trained technologists?
 • Open to being trained?
 • Accept trial standard – not local site standard?

• Imaging Guidelines
Reliability – Image QC

• **Training**
 – Sites – good acquisition
 – Central Readers (radiologists)

• **Administrative QC**
 – Anonymized
 – Right subject, right time point?

• **Image QC**
 – Correct anatomical coverage?
 – Motion artifacts?
 – Acquired according to Imaging Guidelines?

• **Up to 30% of all images will be poor quality or unusable without Image QC**
Reader Reliability

• Qualified Radiologists

• Reader training on the read scoring system
 – EG KL or Modified KL (at least 10 versions)
 – How to score WORMS, BLOKS, MOCART etc

• Inter-reader calibration
 – Eligibility
 – Efficacy/Safety

• Inter and intra Reader calibration
 – on going?
Reliability – Computer systems

• Validation

• CFR 21 Part II compliance
 – Image Management systems
 – Read systems

• Meets new FDA draft Guidance for Industry:
 – Guidance for Industry: Standards for Clinical Trial Imaging Endpoints (Aug 2011)
 – EG Charter, monitors, phantoms, QC etc
Imaging Requirements

- Diagnostic Sensitivity
- Precision/Accuracy
- Reliability
- Relevance
- Cost effective
- Acceptance by regulatory agencies
- Acceptability to Subject
- Safety to subject and operator
Gold Standard? Or Best method?

Do either have any clinical meaning or relevance?
Validation

• Validation as a BioMarker/Surrogate
• Does this match the requirements for a biomarker/surrogate end point?
• Is it on the correct biological pathway?
Validation

• Validation as a BioMarker/Surrogate
• Does this match the requirements for a biomarker/surrogate end point?
• Is it on the correct biological pathway?
BioMarker Definitions

“A biomarker that is measured in an analytical test system with well-established performance characteristics and for which there is widespread agreement in the medical or scientific community about the physiologic, toxicologic, pharmacologic, or clinical significance of the results.”

A probable valid biomarker is defined as

“a biomarker that is measured in an analytical test system with well-established performance characteristics and for which there is a scientific framework or body of evidence that appears to elucidate the physiologic, toxicologic, pharmacologic, or clinical significance of the test results.”
Validation

• Validation as a BioMarker/Surrogate
• *Does this match the requirements for a biomarker/surrogate end point?*
• *Is it on the correct biological pathway?*
Reasons for Surrogate Failure: 1

Reason for failure of surrogate end point: The surrogate is not in the causal pathway of the disease process.
Reasons for Surrogate Failure: 2

Reason for failure of surrogate end point:
Of several causal pathways of disease, the intervention affects only the pathway mediated through the surrogate.
Reason for failure of surrogate end point: The surrogate is not in the pathway of the intervention’s effect or is insensitive to its effect.
Reasons for Surrogate Failure: 4

Reason for failure of surrogate end point:
The intervention has mechanisms of action independent of the disease process.
Dotted lines = mechanisms of action that might exist.

Reasons for Surrogate Success:

The setting that provides the greatest potential for the surrogate end point to be valid.

Fleming TR, DeMets DL. Surrogate End Points in Clinical Trials: Are We Being Misled? Annals of Int Med; 125; 605-613, 1996;125:605-613
Imaging Requirements

- Diagnostic Sensitivity
- Precision/Accuracy
- Reliability
- Relevance
- Cost effective
- Acceptance by regulatory agencies
- Patient acceptability
- Safety to patient and operator
Cost Effective

Varies with study phase

• Phase I/II - Not relevant
• Phase III
• Phase IIIb
• Phase IV and clinical setting
Imaging Requirements

- Diagnostic Sensitivity
- Precision/Accuracy
- Reliability
- Relevance
- Cost effective
- Acceptance by regulatory agencies
- Patient acceptability
- Safety to patient and operator
Acceptable to Regulatory Agencies

• For general use
• For special use cases
• Supporting data in clinical trial submissions

E.G. MRI is an accepted clinical endpoint, but NOT clinical trial end point
FDA Directives

• March 1997
 • Guidance states that a single, multi-endpoint trial may be used in lieu of several separate trials. Example: Betaseron

• October 1998
 • Draft Guidance for Industry - Developing Medical Imaging Drugs and Biologics.

• June 2004
 • Guidance for industry Developing Medical Imaging Drug and Biological Products, Part 1, Part 2, Part 3.

• October 2011
 – Draft Guidance for Industry on Standards for Clinical Trial Imaging Endpoints

• Expected final Oct/Nov 2012
 • http://www.regulations.gov/#!searchResults;rpp=10;po=0;s=FDA%25E2%2580%25932011%25E2%2580%2593D%25E2%2580%25930586
Regulatory Issues

• Image data will be treated with the rigor as other clinical data
 • Loss of data viewed seriously
 • 95% image data submission is possible

• Site Image Acquisition

• Efficacy Assessment
 • Independent
 • Central
 • Blinded Readings

• End point data should match the protocol end point (not always the case!)
Regulatory Issues

• **Standardized Reading Process**
 - Identical Hardware/Software
 - Same image display order of randomized images
 - Allow for 100% duplication of reading process

• **Optimum Method to Display Images**
 - Digital Images
 - Electronic control of data retrieval
 - Digital measurements
 - Reproduce image display order
 - Review response assessments
Imaging Requirements

- Diagnostic Sensitivity
- Precision/Accuracy
- Reliability
- Relevance
- Cost effective
- Acceptance by regulatory agencies
- Acceptable to Subject
- Safety to subject and operator
Subject Acceptability

- Is it comfortable?
- Is it frightening?
- Is it a +ve experience?
 - EG MRI – Claustrophobia
- How does the technologist treat the subject?
- Will the subject return for follow-up?
Imaging Requirements

- Diagnostic Sensitivity
- Precision/Accuracy
- Reliability
- Relevance
- Cost effective
- Acceptance by regulatory agencies
- Acceptable to Subject
- Safety to subject and operator
Safe for the Subject

Variable levels of risk depending on

- Phase of study
- Disease
- Phase of the disease
Safety for the Operator
Imaging Requirements

• Diagnostic Sensitivity
• Precision/Accuracy
• Reliability
• Relevance
• Cost effective
• Acceptance by regulatory agencies
• Acceptable to Subject
• Safety to subject and operator
cindunistat Results: OARSI 2012

A6171016: LS-Mean (95% CI) Change from Baseline in Joint Space Width
Subjects with Kellgen and Lawrence Grade <= 2

LS-Mean (95% CI) Change from Baseline in Joint Space Width

Placebo
SD-6010 50 mg QD
SD-6010 200 mg QD

Weeks
BL 48 96

*
Failure – Why?

• Calcitonin failed on JSN Endpoint
• Failed Futility Analysis (placebo did not demonstrate significant change)
• 2 Possible reasons:
 – Incorrect subject enrollment (poor KL scoring)
 – Poor QC of images so precision was decreased
 – Combination of both
Conclusion: Where to next?

- Diagnostic Sensitivity
- Precision/Accuracy
- Reliability
- Relevance
- Cost effective
- Acceptance by regulatory agencies - DRIVER
- Acceptable to Subject
- Safety to subject and operator
Conclusion

• Are we using the best surrogate?

• Are we evaluating OA correctly?
 – What is the pathophysiology?
 – Should we sub categorize?

• New Guidance Documents
 – Validation of Biomarkers
 – Standards for Clinical Trial Imaging End Points

• Evaluate new BioMarkers Carefully
 – Maximize the metrics!