Joel A. Block, M.D.

The Willard L. Wood, M.D. Professor and Director, Division of Rheumatology
Rush Medical College
Rush University Medical Center
Chicago, IL
jblock@rush.edu

Editor-in-Chief, Osteoarthritis & Cartilage
In the last 12 months, I have had the following relationships related to OA research:

<table>
<thead>
<tr>
<th>Nature of Financial Relationship</th>
<th>1. Commercial Interest</th>
<th>2. What Was Received</th>
<th>3. For What Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novartis, Pfizer, Abbvie, Janssen, TissueGene</td>
<td>Research Funds</td>
<td>Clinical Trials</td>
<td></td>
</tr>
<tr>
<td>Daiichi-Sankyo, Agios, Omeros</td>
<td>Royalties</td>
<td>Intellectual Property: Cell lines</td>
<td></td>
</tr>
<tr>
<td>Zynerba Pharma, Inc., GlaxoSmithKline, Inc. Medivir Inc</td>
<td>Consulting Fees: OA Therapeutics</td>
<td>Consultant</td>
<td></td>
</tr>
<tr>
<td>Discgenics, Inc</td>
<td>Consulting Fees</td>
<td>DSMB</td>
<td></td>
</tr>
<tr>
<td>** Osteoarthritis Research Society International</td>
<td>Stipend</td>
<td>Editor-in-Chief, Osteoarthritis and Cartilage</td>
<td></td>
</tr>
</tbody>
</table>

** Not Commercial
OA is a slowly progressive process, with years (decades) of subclinical activity prior to presentation of symptomatic disease.

There are no treatments or therapeutic strategies that have been shown to alter the progression of disease in humans.

It is widely believed (and repeatedly published) that “to develop effective therapeutics, predictors & markers of progression are necessary”
US FDA Fast track for accelerated approval (Part 312, subpart E (21 CFR part 312)) requires:

- qualifying criteria: “a drug that treats a serious condition and generally provides a meaningful advantage over available therapies and demonstrates an effect on a surrogate endpoint that is reasonably likely to predict clinical benefit ...”
Background

- “FDA recognizes that OA can be a serious disease with an unmet medical need for therapies that modify the underlying pathophysiology of the disease and potentially change its natural course to prevent long-term disability.”

Background: OA Biomarkers

US FDA Fast track for accelerated approval (Part 312, subpart E (21 CFR part 312)) requires:

- **qualifying criteria**: “a drug that treats a serious condition and generally provides a meaningful advantage over available therapies and demonstrates an effect on a [**surrogate endpoint**](#) that is reasonably likely to predict clinical benefit …”
OA Biomarkers: History

- Serious work began in the 1970s
How far have we come, and Where do we need to go?

Today, our job is to:

1. Define the status of surrogate structural markers in OA
 (What are the meaningful data re: OA surrogate markers - soluble and imaging?)
2. Discuss what it takes to demonstrate structural benefit.
 (Are we now ready for evidence-based endpoints? If not, what do we need?)
3. Consider what is required after approval to prove clinical benefit.
 (What needs to be demonstrated to convince the Agency of a meaningful structure modifier?)
The Alternatives

Finally, New Non-Surgical Options For Bone-on-Bone KNEE PAIN Osteoarthritis

FDA-Cleared Technology. Safe, Painless & Required NO Knee Replacement Surgery

FREE Lunch Seminar

Do you suffer from the following symptoms?
- Can't go up or down the stairs
- Knees lock up with prolonged sitting, standing or sleeping
- Difficulty getting out of the car
- Difficulty walking or hiking with loved ones
- Can no longer play golf or your favorite hobby
- Swollen, stiff & sore knees

Seating is Limited!
To reserve your place, please call
(224) 303-4883

ANN SATHER RESTAURANT
909 W. Belmont Ave.
Chicago
TUESDAY
May 21st @ 11:30am

Dr. Andrew Knecht

STOP THE PAIN!

Do You Suffer From...
- Knee Pain
- Neck Pain
- Hip Pain
- Shoulder Pain
- Neuropathy
- Low Back Pain
- Joint Pain

www.StemCellTherapyForPain.com

Regenerative medicine is now available locally and can effectively reduce and even eliminate your pain without surgery or addiction medications.

Find Out If Regenerative Medicine Is Right For You!

SAFE • ETHICAL • EFFECTIVE
RESERVE YOUR SPOT TODAY
844-677-3740

Received via US Mail
5/13/2019

Chicago Tribune: 4/12/2018
Meeting Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 – 9:15 AM</td>
<td>Welcome and Overview</td>
<td>Joel Block, MD</td>
</tr>
<tr>
<td>9:15 - 9:45 AM</td>
<td>Impact of OA</td>
<td>Tuhina Neogi, MD, PhD, Leigh Callahan, PhD, Ranay Collins, Denise Marksberry</td>
</tr>
<tr>
<td>9:45 – 10:00 AM</td>
<td>Group discussion</td>
<td>Jeffrey Katz, MD - Moderator</td>
</tr>
<tr>
<td>10:00 – 10:15 AM</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>10:15 – 10:45 AM</td>
<td>Current status imaging biomarkers</td>
<td>Philip Conaghan, MD, PhD</td>
</tr>
<tr>
<td>10:45 – 11:00 AM</td>
<td>Current status soluble biomarkers for OA</td>
<td>Virginia Kraus, MD, PhD</td>
</tr>
<tr>
<td>11:00 – 11:30 AM</td>
<td>Group discussion</td>
<td>Joel Block, MD - Moderator</td>
</tr>
<tr>
<td>11:30 – 12:00 PM</td>
<td>Applying biomarkers for accelerated approval of OA structure modifying drugs</td>
<td>Nikolay Nikolov, MD</td>
</tr>
<tr>
<td>12:00 – 12:30 PM</td>
<td>Group discussion</td>
<td>Marc Hochberg, MD, MPH - Moderator</td>
</tr>
</tbody>
</table>
Meeting Agenda (continued)

<table>
<thead>
<tr>
<th>Time</th>
<th>Agenda Item</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30 – 1:15 PM</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>1:15 – 2:15 PM</td>
<td>Post approval study designs for drugs approved on the basis of a surrogate endpoint in OA</td>
<td>Lee Simon, MD</td>
</tr>
<tr>
<td>2:15 – 3:30 PM</td>
<td>Group discussion</td>
<td>Philip Conaghan, MD, PhD Moderator</td>
</tr>
<tr>
<td>3:30 – 3:45 PM</td>
<td>Final comments</td>
<td>Joel Block, MD</td>
</tr>
</tbody>
</table>
IMPACT OF OA PANEL DISCUSSION

Tuhina Neogi, MD, PhD
Leigh Callaghan, PhD
Ranay Collins
Denise Marksberry
BURDEN OF OSTEOARTHRITIS

Tuhina Neogi, MD, PhD, FRCPC
Professor of Medicine and of Epidemiology
Boston University School of Medicine and
School of Public Health
Disclosures

- EMD Merck-Serono
- Novartis
- Pfizer/Lilly
- Regeneron
Osteoarthritis Epidemiology

302 million

<table>
<thead>
<tr>
<th>Joint Site</th>
<th>Radiographic OA</th>
<th>Symptomatic OA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee</td>
<td>20-30%</td>
<td>5/10-20%</td>
</tr>
<tr>
<td>African Americans</td>
<td>52.4%</td>
<td>Whites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.2%</td>
</tr>
</tbody>
</table>
Incidence of OA

Lifetime Risk of symptomatic knee OA

♂ 40% ♀ 47%

Murphy, et al. A&R 2008

Pain in the Body

Percent of adult population (age ≥18)

- Any pain: 60%
- Joint: 40%
- Low back: 38.3%
- Neck: 22.7%
- Hand: 17.8% (any joint)
- Wrist: 16.5%
-肩: 21.9%
- Elbow: 8.8%
- Back: 38.3%
- Hip: 20.4%
- Knee: 30.6%
- Ankle: 12.5%
- Foot: 15.4% (any joint)

NHIS 2007
Chronic Pain: Most of it is OA and Back Pain

*Estimated projections.
Chronic Pain is More Prevalent and Costly than other Common Diseases

Estimated Annual Costs, Billions (USD, 2010)

- Chronic Pain: $635 billion
- Cardiovascular Disease: $309 billion
- Cancer: $243 billion
- Diabetes: $188 billion

Prevalence, Millions

- Chronic Pain: 100 million
- Cardiovascular Disease (CVD): 28 million
- Diabetes: 30 million
- Osteoarthritis (OA): 30 million
- Chronic Low Back Pain (CLBP): 30 million
- Gout: 8.3 million
- Rheumatoid Arthritis (RA): 1.9 million
Prevalence of MSK Diseases

1 in 2 (127 million) adults are affected, twice the rate of chronic heart and lung diseases

Proportion of United States Population Reporting Chronic Medical Conditions, 2012

- Musculoskeletal: 54%
- Circulatory: 31%
- Respiratory: 28%
- Diabetes: 13%
- Cancer: 9%

National Center for Health Statistics, National Health Interview Survey, 2012
Clinical Knee Osteoarthritis

Pain is primary clinical symptom
People are living longer with knee OA
Limited management options
Joint replacement: “definitive treatment”
Osteoarthritis Clinical Course

Musculoskeletal diseases are now the 2nd most common cause of years lived with disability worldwide.
Burden to Health Care System

■ Joint Pain and Arthropathies are #1 reason for outpatient visits (NACMS 2015)

■ OA was 3rd most common reason for hospitalizations (NIS 2015)
 – 921,000 hospitalizations

■ Knee replacement surgery: 97% for knee OA
 – 3.5 million by 2030

[1] Includes hospital discharges, ED, outpatient, and physician visits.
[2] Includes only hospital discharges and ED visits.
Scope of the OA Problem

- **Prevalence and Burden**: >300 million adults globally, 15% adult population
- **Cost and Burden**: >$100s billion annually, >900,000 hospitalizations
- **Lack of Effective Therapies**: Disability, Quality of Life, Opioid Epidemic
Urgent Need for More Options

Symptom management alone is insufficient

Need therapies to address the underlying disease pathology
BURDEN OF OSTEOARTHRITIS: COMORBIDITY AND MORTALITY

Leigh F. Callahan, PhD
Mary Link Briggs Distinguished Professor of Medicine
Associate Director, Thurston Arthritis Research Center
University of North Carolina, Chapel Hill
OA and Comorbidity

- People with OA have on average 2.6 moderate-to-severe comorbidities
- 31% of people with OA have five or more other chronic conditions

Did you know?

About half of all adults with heart disease or diabetes also have arthritis

Between 59 and 87% of people with OA have at least one other chronic condition, especially cardiovascular disease, diabetes and high blood pressure

Van Dijk; BMC Musc Disease 2008
Kadam, Ann Rheum Disease 2004
OA and Comorbidity

- The presence of comorbidities in older adults with OA is associated with more pain and greater limitation in activities of daily living.
- Comorbidities may have a significant impact on choice and tolerance of treatments.
OA and Comorbidity: Cardiovascular Disease

- CVD affects 1 in 3 American adults as the most common cause of death in the Western World
- 61% of people awaiting total knee replacement surgery have CVD
- In primary care, patients with hip and knee OA have twice the rate of CVD
- In people with established CVD, OA is associated with worse physical health and increased burden of symptoms

Mozaffarian, D; 2015
Calvet, J; 2015
OA and Comorbidity: Diabetes

- DM affects approximately 11% of American adults
- People with OA have a 32% increased risk of developing diabetes over a 12-year period
- OA and DM have shared risk factors: older age and obesity
- Walking difficulty is an independent risk factor for developing DM
- OA may impair the ability to exercise and lose weight

OA and Comorbidities

Conclusion

- Increased risk of comorbidities in patients with OA
- The comorbidities effect treatment choices
- Comorbidities in OA may be associated with poor outcomes
Table 2.
Meta-analyses of Osteoarthritis on Mortality

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Number of studies</th>
<th>Definition of OA</th>
<th>All-cause mortality</th>
<th>CVD-specific mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>Veronese [15]</td>
<td>7 Any OA, 4 CVD-specific any OA, 3 Knee OA, 2 Hip OA, 3 Hand OA</td>
<td>Clinical and/or radiologic assessment of hand, hip and knee OA</td>
<td>Any OA: HR = 1.10 (0.97-1.25), Hip OA: HR = 1.08 (0.92-1.26), Knee OA: HR = 1.21 (0.82-1.78)</td>
<td>Hand OA: HR = 0.91 (0.79-1.04), Any OA: HR = 1.21 (1.10-1.34)</td>
</tr>
<tr>
<td>2016</td>
<td>Xing [17]</td>
<td>7 Symptomatic OA, 6 Radiographic OA</td>
<td>Radiographic hand, knee, hip or spine: with or without symptoms</td>
<td>Symptomatic OA: HR = 0.91 (0.68-1.23), Radiographic OA: HR = 1.13 (0.95-1.35)</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Han [16]</td>
<td>13 Any OA, 5 CVD-specific any OA, 6 Any rOA, 5 Any sxOA, 6 Knee OA, 4 Hip OA, 4 Hand OA</td>
<td>Hip, knee, spine, hand</td>
<td>Any OA: HR = 1.06 (0.88-1.28), Any rOA: HR = 1.24 (1.01-1.53), Any sxOA: HR = 0.95 (0.68-1.33)</td>
<td>Knee OA: HR = 1.24 (0.87-1.76), Hip OA: HR = 1.06 (0.77-1.20), Hand OA: HR = 1.01 (0.89-1.14)</td>
</tr>
<tr>
<td></td>
<td>IPD meta-analysis</td>
<td>Knee sxOA: 3 US cohorts, 2 ROW, Hip pain: 2 US cohorts, 2 ROW</td>
<td>Symptomatic knee rOA; hip pain</td>
<td>Knee sxOA: US: HR = 1.23 (1.07-1.42), ROW: HR = 0.72 (0.39-1.35), Hip pain: US: HR = 1.20 (1.04-1.37), ROW: HR = 0.99 (0.87-1.10)</td>
<td></td>
</tr>
</tbody>
</table>

Note. CVD, cardiovascular disease; HR, hazard ratio; IPD, Individual Patient Data; OA, osteoarthritis; OR, odds ratio; rOA, radiographic osteoarthritis; sxOA, symptomatic osteoarthritis; SMR, standardized mortality ratio; ROW, rest-of-world.
Kaplan, Meier survival curves for mortality by baseline knee rOA and/or knee pain group

Cleveland, Alvarez, Schwartz, Losina, Renner, Jordan and Callahan, OAC: 27; 593-602, 2019
Kaplan, Meier survival curves for mortality by baseline knee rOA and/or knee pain group

Cleveland, Alvarez, Schwartz, Losina, Renner, Jordan and Callahan, OAC: 27; 593-602, 2019
All-cause Mortality

HR\(^\&\) (95% CI) for All-Cause Mortality

\(^\&\)Adjusted for enrollment wave, age, sex, race, education, knee injury, cancer, non-steroidal anti-inflammatory drugs, hypertension, smoking, liver disease, alcohol use, depression, physical activity, BMI, diabetes, cardiovascular disease

Cleveland, Alvarez, Schwartz, Losina, Renner, Jordan and Callahan, OAC: 27; 593-602, 2019
All-cause Mortality, Stratified by Sex

Table:

<table>
<thead>
<tr>
<th>Sex</th>
<th>Condition</th>
<th>HR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>rKOA</td>
<td>1.24</td>
<td>(0.85, 1.74)</td>
</tr>
<tr>
<td>Females</td>
<td>Knee sx</td>
<td>1.30</td>
<td>(1.09, 1.54)</td>
</tr>
<tr>
<td>Females</td>
<td>sxKOA</td>
<td>1.22</td>
<td>(1.03, 1.44)</td>
</tr>
<tr>
<td>Males</td>
<td>rKOA</td>
<td>1.27</td>
<td>(0.85, 1.80)</td>
</tr>
<tr>
<td>Males</td>
<td>Knee sx</td>
<td>1.04</td>
<td>(0.85, 1.24)</td>
</tr>
<tr>
<td>Males</td>
<td>sxKOA</td>
<td>1.13</td>
<td>(0.93, 1.38)</td>
</tr>
</tbody>
</table>

Symbols:
- rKOA: Right Knee Osteoarthritis
- Knee sx: Knee symptoms
- sxKOA: Severe Knee Osteoarthritis

Notes:
- Adjusted for enrollment wave, age, race, education, knee injury, cancer, non-steroidal anti-inflammatory drugs, hypertension, smoking, liver disease, alcohol use, depression, physical activity, BMI, diabetes, cardiovascular disease

Cleveland, Alvarez, Schwartz, Losina, Renner, Jordan and Callahan, OAC: 27; 593-602, 2019
All-cause Mortality, Stratified by Race

HRa (95% CI) for All-Cause Mortality

- **African American**
 - rKOA: 0.78 (0.60 - 0.99)
 - Knee sx: 0.90 (0.78 - 1.12)
 - sxKOA: 0.88 (0.78 - 0.99)

- **Caucasian**
 - rKOA: 1.03 (0.78 - 1.09)
 - Knee sx: 1.04 (1.03 - 1.22)
 - sxKOA: 1.04 (1.03 - 1.22)

aAdjusted for enrollment wave, age, sex, education, knee injury, cancer, non-steroidal anti-inflammatory drugs, hypertension, smoking, liver disease, alcohol use, depression, physical activity, BMI, diabetes, cardiovascular disease

Cleveland, Alvarez, Schwartz, Losina, Renner, Jordan and Callahan, OAC: 27; 593-602, 2019
All-cause Mortality, Stratified by Age

HR6 (95% CI) for All-Cause Mortality

6Adjusted for enrollment wave, age, sex, race, education, knee injury, cancer, non-steroidal anti-inflammatory drugs, hypertension, smoking, liver disease, alcohol use, depression, physical activity, BMI, diabetes, cardiovascular disease
All-cause Mortality, Stratified by Obesity

HR§ (95% CI) for All-Cause Mortality

BMI<30

- rKOA: 1.05 (0.75, 1.50)
- Knee sx: 1.19 (0.86, 1.66)
- sxKOA: 1.26 (0.89, 1.75)

BMI≥30

- rKOA: 1.17 (0.90, 1.51)
- Knee sx: 1.31 (1.01, 1.66)
- sxKOA: 1.47 (1.18, 1.83)

*Adjusted for enrollment wave, age, sex, race, education, knee injury, cancer, non-steroidal anti-inflammatory drugs, hypertension, smoking, liver disease, alcohol use, depression, physical activity, diabetes, cardiovascular disease

Cleveland, Alvarez, Schwartz, Losina, Renner, Jordan and Callahan, OAC: 27; 593-602, 2019
Fig. 1. Cardiovascular mortality in patients with knee OA as compared to the general population, by sex - adjusted hazard ratios with 95%CI from Cox regression model during 3 periods of the follow-up time. *CVD – cardiovascular diseases, IHD – ischemic heart diseases, MI – myocardial infarction.
Cardiovascular Mortality in Patients with Hip OA

Fig. 2. Cardiovascular mortality in patients with hip OA as compared to the general population, by sex - adjusted hazard ratios with 95%CI from Cox regression model during 3 periods of the follow-up time. *CVD – cardiovascular diseases, IHD – ischemic heart diseases, MI – myocardial infarction.
OA and Mortality Conclusion

• Increased all-cause and CVD mortality has been noted in individuals with knee pain and symptomatic knee OA compared to the general population

• Increased all-cause and CVD mortality has been noted in individuals with hip pain or hip OA compared to the general population

• Increased CVD mortality has been noted in individuals with any OA compared to the general population
OA Disease Progression: Current status of imaging biomarkers

Philip Conaghan MBBS PhD FRACP FRCP
Director, Leeds Institute of Rheumatic & Musculoskeletal Disease, University of Leeds
Deputy Director, NIHR Leeds Biomedical Research Centre
Leeds, United Kingdom
Disclosures

Advisory boards or speakers bureaus for:
• AbbVie, BMS, EMD Serono, Flexion, Galapagos, GSK, Lilly, Novartis, Pfizer, Samumed
This presentation

- Focus on knee OA
- Focus on most advanced MRI quantitative endpoints: cartilage thickness, bone shape (not detailed review), especially predictive validity for patient important outcomes
- Heterogenous disease but….understanding of multiple tissue relationships has got better
- Structure-pain understanding is improving
- Suggest a new way of thinking about OA progression based on imaging of structure
X-ray lessons
X-ray positioning
Location specific JSW

Neumann G et al
Osteoarthritis Cartilage 2009
Osteoarthritis and Cartilage

Summary and recommendations of the OARSI FDA osteoarthritis Assessment of Structural Change Working Group

P.G. Conaghan † † *, D.J. Hunter § §, J.F. Maillefert ¶ # † †, W.M. Reichmann ‡ ‡ ‡ ‡, E. Losina ‡ ‡ ‡ ‡

Osteoarthritis and Cartilage

Review

OARSI Clinical Trials Recommendations: Knee imaging in clinical trials in osteoarthritis

D.J. Hunter † † *, R.D. Altman §, F. Cicuttini ¶, M.D. Crema ¶ #, J. Duryea † †, F. Eckstein ‡ ‡ ‡ ‡, A. Guermazi ¶, R. Kijowski ¶ ¶, T.M. Link ¶ ¶, J. Martel-Pelletier ‡ ‡, C.G. Miller † † †, T.J. Mosher ‡ ‡ ‡ ‡ ‡, R.E. Ochoa-Albiztegui ¶ ¶ ¶ ¶, J.-P. Pelletier ‡ ‡, C. Peterfy ¶ ¶ ¶, J.-P. Raynauld ‡ ‡, F.W. Roemer ¶ ¶ ¶ ¶, S.M. Totterman † † † †, G.E. Gold ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
OARSI OA Knee Trial Recommendations: X-rays

- The use of fluoroscopic positioning and semi-flexed views improves responsiveness, although … access to fluoroscopic facilities is restricted.
- Studies will generally need to be at least 12 and more likely 24 months duration.
- The IMD of the tibial plateau should not change between visits, and ideally should be no more than 1.5 mm.
- It is advisable to “enrich” a knee OA study population to increase the rate of JSW loss.
Incident Knee Replacement by X-ray Status

- 8201 OAI knees, 9 yr follow up, 436 with KR

<table>
<thead>
<tr>
<th>Status</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLG 0</td>
<td>0%</td>
</tr>
<tr>
<td>KLG 0</td>
<td>0.7%</td>
</tr>
<tr>
<td>KLG 0</td>
<td>2.3%</td>
</tr>
<tr>
<td>KLG 0</td>
<td>2.1%</td>
</tr>
<tr>
<td>KLG 0</td>
<td>2.8%</td>
</tr>
<tr>
<td>KLG 1</td>
<td>17%</td>
</tr>
<tr>
<td>KLG 2</td>
<td>44%</td>
</tr>
</tbody>
</table>

Eckstein F. OARSI 2019
[Oral presentation]
Pain predicted by X-ray KL grade

- MOST and Framingham
- Within-person knee-matched design, eliminating between-person differences
- Strong relationship between KL grade and severity of pain

Neogi T et al.
BMJ 2009
OA Imaging Biomarkers: X-rays

Strengths:
- Cheap, feasible
- Measure a broad OA construct involving JSW (surrogate for cartilage) and osteophytes
- Provided our understanding of OA epidemiology

Weaknesses:
- JSW is a very ‘noisy’ measure; osteophytes disappear if knee rotates slightly
- Needs large, long duration trials
- Poor relationship to symptoms at individual level
How has MRI helped?
Direct visualisation of tissues

Hunter et al.
Osteoarthritis Cartilage
2011
Demonstrated insensitivity of Xray

- Community-based study of 710 people >50yo
- No radiographic evidence of knee OA (weight-bearing, flexed PA view)
- 1.5T MRI, read using WORMS

Guermazi A et al, BMJ 2012;345:e5339
Structure: MRI cartilage
OA MRI: Cartilage Morphology

- Measuring a single construct
- Very good construct validity and reliability

Bowes M et al. J Rheumatol 2019 [epub]
Predictive validity for TJR

Table 3. Odds of knee replacement according to MRI features of osteoarthritis

<table>
<thead>
<tr>
<th>Component</th>
<th>Feature</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartilage</td>
<td>Tibial cartilage loss >8% vs.</td>
<td>7.1 (1.4–36.5)</td>
</tr>
<tr>
<td></td>
<td>tibial cartilage volume >3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higher cartilage defect scores (8–15) vs.</td>
<td>6.0 (1.6–22.3)</td>
</tr>
<tr>
<td></td>
<td>Lower cartilage defect scores (2–7)</td>
<td></td>
</tr>
<tr>
<td>Medial cartilage volume loss</td>
<td></td>
<td>18.7 (2.4–145.7)</td>
</tr>
<tr>
<td>Maximum grade for area extent of cartilage damage in the whole knee</td>
<td></td>
<td>4.00 (2.23–7.18)</td>
</tr>
<tr>
<td>Maximum grade for full thickness cartilage damage in the whole knee</td>
<td></td>
<td>3.45 (2.15–5.55)</td>
</tr>
</tbody>
</table>

Demehri S et al
Curr Opin Rheum 2015
(also Pelletier JP et al
Ann Rheum Dis 2013)
Quantitative MRI Measures of Cartilage (cMFTC) Predict Knee Replacement

- Nested case-control study of OAI: 127 [113 pts] knees replaced between BL and Y4
- 1 control knee matched for BL KLG, gender, age
- Longitudinal change in cMFTC between T−1 and T0 significantly greater in KR cases: median −0.115 μm vs controls: median −0.060 μm (p=0.006); ccAUC=0.59
- Longitudinal differences differed by KLG, p=0.002; KLG 2 cases: median −0.145 μm vs controls: +0.035 μm
 KLG 3 cases: median −0.170 μm vs controls: −0.120 μm

Eckstein F et al.
Ann Rheum Dis 2013
OARSI OA Knee Trial Recommendations: MRI

- For MRI cartilage morphometry in knee OA, there is some evidence for construct and predictive validity, with good evidence for reliability and responsiveness.
- Using MRI it is possible to accurately and feasibly measure change in cartilage morphometry over 12 months for knee OA.
- It is possible to “enrich” a study population with MRI outcomes in order to increase the rate of cartilage loss, for example, by including higher KL grade...
- In terms of correlations with concurrent symptoms, there is a weak association between progression of cartilage loss and increasing symptoms.
- There is some predictive validity with progression of cartilage loss predicting subsequent total joint replacement.
- More information is required on the performance metrics of MRI semi-quantitative and compositional measures of cartilage.

Hunter DJ et al
Osteoarthritis Cartilage 2015
Predictive Validity for Symptoms (FNIH)

<table>
<thead>
<tr>
<th>Group comparison</th>
<th>Cartilage thickness change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BL→24M</td>
</tr>
<tr>
<td></td>
<td>aOR (95% CI)</td>
</tr>
<tr>
<td>1 vs. 4</td>
<td>X-ray + pain vs. control</td>
</tr>
<tr>
<td>2 vs. 4</td>
<td>X-ray vs. control</td>
</tr>
<tr>
<td>3 vs. 4</td>
<td>Pain vs. control</td>
</tr>
<tr>
<td>1+2+3 vs. 4</td>
<td>X-ray or pain vs. control</td>
</tr>
<tr>
<td>1+2 vs. 3+4</td>
<td>X-ray vs non-Xray</td>
</tr>
<tr>
<td>1+3 vs. 2+4</td>
<td>Pain vs. Non-Pain</td>
</tr>
</tbody>
</table>

$^\varepsilon$ group 1 = knees with both radiographic (X-ray) and pain progression (primary cases); group 2 = knees with radiographic progression but not pain progression; group 3 = knees with pain progression but not radiographic progression; group 4 = knees with neither radiographic nor pain progression (super controls).

Predictive Validity for Symptoms

Preceding and concurrent cartilage thickness change in the cMFTC of knees with or without pain progression and knees with or without radiographic progression in the period Y2→Y4.

Wirth W et al.
Osteoarthritis Cartil 2017
MRI Cartilage: Predictive Probability for KR

- OAI knees with symptomatic OA at baseline
 - Definite osteophyte (OARSI atlas grade 1-3; clinical center screening reading)
 - Frequent knee symptoms at baseline
- MRI readings at baseline and Y2; knee replacement outcomes after the 2-year imaging window

Kwoh CK et al. IWOAI 2018 [oral presentation]
MRI Cartilage: Predictive Probability for KR

Kwoh CK et al. IWOAI 2018 [oral presentation]
Structure: MRI bone
MRI Bone: Bone Marrow Lesions

Roemer F et al. Osteoarthritis Cartilage 2009
Understanding 3D bone shape
Understanding 3D bone shape: machine learning

Courtesy Imorphics
3D bone shape: predictive validity

<table>
<thead>
<tr>
<th>3-D bone shape vector</th>
<th>Relationship of baseline 3-D bone shape to incident radiographic OA in the whole sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incident radiographic knee OA, irrespective of time of OA onset</td>
</tr>
<tr>
<td></td>
<td>Adjusted OR (95% CI) †</td>
</tr>
<tr>
<td>Whole joint (femur, tibia, and patella)</td>
<td></td>
</tr>
<tr>
<td>Highest tertile</td>
<td>2.5 (1.5–4.1)</td>
</tr>
<tr>
<td>Middle tertile</td>
<td>1.8 (1.1–2.9)</td>
</tr>
<tr>
<td>Lowest tertile (reference)</td>
<td>1.0</td>
</tr>
<tr>
<td>Per SD unit change toward mean OA shape</td>
<td>1.5 (1.2–1.8)</td>
</tr>
<tr>
<td>Tibiofemoral joint (femur and tibia)</td>
<td></td>
</tr>
<tr>
<td>Highest tertile</td>
<td>1.8 (1.1–2.9)</td>
</tr>
<tr>
<td>Middle tertile</td>
<td>1.6 (1.0–2.6)</td>
</tr>
<tr>
<td>Lowest tertile (reference)</td>
<td>1.0</td>
</tr>
<tr>
<td>Per SD unit change toward mean OA shape</td>
<td>1.3 (1.1–1.6)</td>
</tr>
</tbody>
</table>

Neogi T et al
Arthritis Rheum 2013
Quantitative MRI bone area

Specific

Medial Femur

- **OA**
 - KL > 1
 - n = 1298

- **Non-OA**
 - KL ≤ 1
 - n = 770

Responsive

<table>
<thead>
<tr>
<th>Measure</th>
<th>1 year SRM</th>
<th>2 year SRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiograph mJSW</td>
<td>0.186</td>
<td>0.311</td>
</tr>
<tr>
<td>MRI cartilage thickness</td>
<td>0.317</td>
<td>0.401</td>
</tr>
<tr>
<td>qMRI 3D bone shape</td>
<td>0.500</td>
<td>0.644</td>
</tr>
</tbody>
</table>

Bowes et al, Ann Rheum Dis 2015
Bone Shape predicts Knee Replacement

<table>
<thead>
<tr>
<th>Imaging variable</th>
<th>Univariable (unadjusted)</th>
<th>Multivariable*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Femur vector</td>
<td>1.79</td>
<td>1.54, 2.09</td>
</tr>
<tr>
<td>Tibia vector</td>
<td>1.64</td>
<td>1.42, 1.90</td>
</tr>
<tr>
<td>Patella vector</td>
<td>1.40</td>
<td>1.26, 1.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KL grade</th>
<th>Univariable (unadjusted)</th>
<th>Multivariable*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>(ref=KL zero)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.42</td>
<td>0.75, 7.82</td>
</tr>
<tr>
<td>2</td>
<td>9.08</td>
<td>3.36, 24.49</td>
</tr>
<tr>
<td>3</td>
<td>31.55</td>
<td>11.23, 88.63</td>
</tr>
<tr>
<td>4</td>
<td>72.77</td>
<td>22.62, 234.07</td>
</tr>
</tbody>
</table>

*Adjusted for KL

Barr AJ et al.
Ann Rheum Dis 2015
3D Bone vs Structure and Symptom Progression

<table>
<thead>
<tr>
<th></th>
<th>Any progression OR (95% CI) per 1 SD increase in change</th>
<th>Radiographic progression OR (95% CI) per 1 SD increase in change</th>
<th>Pain progression OR (95% CI) per 1 SD increase in change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>2.13 (1.68 to 2.71)</td>
<td>2.62 (2.07 to 3.34)</td>
<td>1.30 (1.08 to 1.56)</td>
</tr>
<tr>
<td>Tibia</td>
<td>1.63 (1.33 to 1.99)</td>
<td>1.84 (1.51 to 2.24)</td>
<td>1.17 (0.99 to 1.39)</td>
</tr>
<tr>
<td>Patella</td>
<td>1.39 (1.15 to 1.68)</td>
<td>1.45 (1.21 to 1.75)</td>
<td>1.25 (1.05 to 1.48)</td>
</tr>
<tr>
<td>Lateral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>1.25 (1.04 to 1.50)</td>
<td>1.29 (1.08 to 1.55)</td>
<td>1.17 (0.98 to 1.40)</td>
</tr>
<tr>
<td>Tibia</td>
<td>1.51 (1.24 to 1.83)</td>
<td>1.73 (1.43 to 2.10)</td>
<td>1.22 (1.03 to 1.45)</td>
</tr>
<tr>
<td>Patella</td>
<td>1.45 (1.19 to 1.76)</td>
<td>1.52 (1.26 to 1.84)</td>
<td>1.29 (1.08 to 1.54)</td>
</tr>
<tr>
<td>Notch</td>
<td>1.51 (1.24 to 1.83)</td>
<td>1.57 (1.31 to 1.89)</td>
<td>1.16 (0.98 to 1.37)</td>
</tr>
<tr>
<td>Lateral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trochlea</td>
<td>1.35 (1.12 to 1.63)</td>
<td>1.53 (1.27 to 1.84)</td>
<td>1.21 (1.02 to 1.44)</td>
</tr>
<tr>
<td>Medial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trochlea</td>
<td>1.71 (1.38 to 2.12)</td>
<td>2.02 (1.63 to 2.49)</td>
<td>1.26 (1.06 to 1.50)</td>
</tr>
<tr>
<td>Shape (vector)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>1.86 (1.48 to 2.33)</td>
<td>2.56 (2.03 to 3.24)</td>
<td>1.16 (0.97 to 1.39)</td>
</tr>
<tr>
<td>Tibia</td>
<td>1.42 (1.18 to 1.72)</td>
<td>1.83 (1.51 to 2.22)</td>
<td>1.16 (0.98 to 1.37)</td>
</tr>
<tr>
<td>Patella</td>
<td>1.33 (1.10 to 1.62)</td>
<td>1.26 (1.05 to 1.50)</td>
<td>1.23 (1.03 to 1.47)</td>
</tr>
</tbody>
</table>

Hunter DJ et al.
Ann Rheum Dis 2015
3D bone shape: B score

Less structural severity

Greater structural severity

Blue box shows healthy range – 95% CL of KL 0 knees

KL = 0

KL = 2-3

Neogi A&R 2013;65(8):2048–58
Relationship of cartilage to bone: whole OAI (9433 knees)

Blue box shows healthy range – 95% CL of KL 0 knees

Bowes MA et al
In preparation
OA Imaging Biomarkers: MRI B score

- Reader independent
- Extremely reliable
- Scalar instrument, provides a better ruler for assessing OA structure (40 pts vs 5 for KL grade)
- From a single time point, predicts radiographic progression and patient symptoms
In this multi-tissue disease, which imaging structure should we choose?
Synovial Hypertrophy in OA Knee

<table>
<thead>
<tr>
<th>Number of patients in study</th>
<th>Ultrasound</th>
<th>MRI without Gd</th>
<th>MRI with Gd</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>600</td>
<td>374</td>
<td>120</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **D'agostino, 2006**
- **Song, 2008**
- **Fernandez-Madrid, 1994**
- **Hill, 2001**
- **Conaghan, 2006**
- **Roemer, 2010**
What are the implications of better structural measurement?
Can we enrich?

- Traditionally KL2-3 is a common inclusion, attempting to find real OA
- KL grading quite noisy
Improving Responsiveness of Imaging Biomarkers by JSW Criteria

SRM (± 95% confidence limits)

- Responsiveness of knees selected for rJSW 2-4mm and WOMAC pain ≥3 (n=331, from OAI)

Bowes M et al
Ann Rheum Dis [suppl] 2017
Improving Study Numbers

- Patient Numbers Per Arm to detect 50% change, 80% power, $\alpha = 0.05$

Bowes M et al
Ann Rheum Dis [suppl] 2017
Improving Responsiveness of Imaging Biomarkers by JSW Criteria

<table>
<thead>
<tr>
<th></th>
<th>SRM 1y</th>
<th>0.19</th>
<th>0.07</th>
<th>0.33</th>
<th>0.68</th>
<th>0.80</th>
<th>0.53</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRM 2y</td>
<td>0.09</td>
<td>-0.27</td>
<td>-0.43</td>
<td>-0.81</td>
<td>-1.14</td>
<td>-0.64</td>
<td></td>
</tr>
</tbody>
</table>

Eckstein F. OARSI 2019
[Oral presentation]
Is it possible to modify OA structure?
Sprifermin 5 yr PhII trial: FORWARD

- Sprifermin 100 µg, 3 weekly injections
- Sprifermin 30 µg, 3 weekly injections
- Placebo, 3 weekly injections

Treatment period (2 years)
- Group 1: Sprifermin 100 µg q6 mo
- Group 2: Sprifermin 100 µg q12 mo
- Group 3: Sprifermin 30 µg q6 mo
- Group 4: Sprifermin 30 µg q12 mo

Extended follow-up (3 years)

Screening
- Knee osteoarthritis
- KL Grade 2-3

Randomization
- Week -6
- Month 0
- Month 6
- Month 12
- Month 18
- Month 24

1st endpoint: Change in cartilage thickness (MRI)
2nd endpoints: Patient-reported outcomes of pain and functioning (including WOMAC), JSW (X-ray)

Major efficacy assessments:

Hochberg et al. ACR 2017
Sprifermin 5 yr PhII trial: FORWARD

Hochberg et al. ACR 2017
New Cathepsin K inhibitor (MIV-711): Study design

- Knee pain ≥ 4, <10 on NRS, K-L grade 2 or 3
- All patients remained on current stable analgesia

Conaghan et al. ACR 2017
Results: MRI measures

Area of bone in MF

Average cartilage thickness in CMF

Reduction in bone area increase for both doses

Trend for reduced cartilage thickness loss for both doses

Unadjusted one-sided p-values = 0.002 (100 mg), 0.004 (200 mg)

Unadjusted one-sided p-values = 0.023 (100 mg) and 0.125 (200 mg)

Conaghan et al. ACR 2017
Lessons from RCTs

- Our 2 best MRI biomarkers can show change
- Change is measurable over a reasonable time period
- Symptomatic benefit likely occurs in a different time frame
How do we move forward?
OA is more like osteoporosis…

- …than rheumatoid arthritis
- In RA, concept of DMARD came first from modification of symptoms (inflammation) and reducing consequent damage
- In OA, we see many, many years of accumulation of silent tissue pathologies before any symptoms
But OA is unique and different from osteoporosis…

- We can detect change in bone and cartilage from people in their 20s (not post-menopausal)
- People also have symptoms for many years before requiring total joint replacement (osteoporosis is asymptomatic till fracture)
- This means long-term trials waiting to see benefits in terms of joint replacement are unfair to patients (leaving them in pain) and unfeasible (so we can’t do analogous fracture endpoint trials)
The conundrum

• OA is multi-tissue disease but cartilage and bone do reflect the disease process
• We have very good validated MRI quantitative tools for cartilage and bone that allow feasible clinical trials
• However clinical outcomes resulting from structural improvements (only) will likely be many years away
Acknowledgements

• Mike Bowes
• Alan Brett
• Felix Eckstein
• Virginia Kraus
• Lee Simon
CURRENT STATUS OF SOLUBLE BIOMARKERS FOR OA

Virginia Byers Kraus, MD, PhD
5.16.19
Rationale for biomarkers in OA as endpoints of disease modification (accelerated and traditional approval)

- More likely to be disease related;
- More appropriate for Disease Modifying OA Drug (DMOAD) development;
- Creates a potential path for treating early OA -- BEFORE illness -- when disease more likely modifiable;
- Reports on overall burden of disease (holistic endpoint for generalized disease);
- Potentially avoids unintended consequences of primary emphasis on PROs:
 - Pain — opioid crisis
 - Pain — Nerve Growth Factor inhibitor induced rapidly progressive osteoarthritis
- Improves chances of drug program success;
- Creates a path for developing personalized medicine strategies for OA.
Overview

- Summary FNIH OA Biomarkers Consortium status
- Highlight link of type II collagen degradation and synthesis biomarkers to clinically relevant outcomes
Phase I: Soluble Biomarker Qualification

- **Biomarkers:** measured in OAI
- **Endpoint:** 48M
- **Primary Outcome:** CLINICALLY RELEVANT (case) radiographic progression (0.7 mm joint space narrowing) + Pain progression (increase WOMAC pain score of ≥9 out of 100 units)
- **Predictors of CASE status:** Baseline biomarkers & Change OR time-integrated concentrations over 12M or 24M

Phase II: Soluble Biomarker Qualification

- **Biomarkers**: measured in *placebo* arms of clinical trials
- **Endpoint**: 24M (12M when 24M unavailable; 36M ancillary when available)
- **Primary Outcome**: Radiographic progression (0.7 mm joint space narrowing)
- **Secondary Outcomes**: Radiographic progression (0.5 mm joint space narrowing); Pain Progression; Radiographic+Pain Progression

![Study visits](image)

Trials & number (n) placebo treated participants with data available for trabecular bone texture (TBT) biomarker analyses:

- **Calcitonin** (NCT00486434, NCT00704847) n=809 [Novartis]
- **VIDEO (vitamin D)** (ISRCTN94818153) n=237
- **Cindunistat (iNOS inhibitor)** (NCT00565812) n=27 [Pfizer]
- **Sprifermin I (FGF-18)** (NCT01033994) n=48 [Merck Serono]
- **Sprifermin II (FGF-18)** (NCT01033994) n=108 [Merck Serono]
- **TissueGene-C (TGFBeta1)** (NCT02072070) n=81 [Invossa/KOLON Life Science]
- **SEKOIA (Strontium Ranelate)** (ISRCTN41323372) n=120 [Servier]
Status of Soluble Biomarker Qualification

Primary COU:

Prognostic baseline biomarkers - MRI, biochemical and radiographic trabecular bone texture (TBT) - to enrich enrollment/identification of osteoarthritis patients that are likely to experience long term radiographic progression in the absence of treatment.

Secondary or allied COUs:

Prognostic short-term change in MRI or time-integrated concentrations (TICs) in biochemical and TBT biomarkers (baseline to 12 months) to provide a method of identification of osteoarthritis patients that are likely to experience long-term radiographic progression in the absence of treatment.

LOI for biochemical markers targeted for June 2019 submission to FDA
Biochemical: 9 biochemical markers in urine (u) or serum (s) – uCTXII, sPIIANP, and uC2C-HUSA (are derived from COL2A1); sNTXI, uNTXI, sCTXI, uCTXIalpha, uCTXIbeta (are derived from COL1A1); and sHyaluronan (PDB name 3HYA). uCreatinine (uCr) for normalizing urine biomarkers

<table>
<thead>
<tr>
<th>Biomarker Domain</th>
<th>Available Sample Size</th>
<th>OA Progression Rate</th>
<th>Predicted Odds of progression</th>
<th>Estimated Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical (n=1126)</td>
<td>1000</td>
<td>11%</td>
<td>1.4</td>
<td>88%</td>
</tr>
</tbody>
</table>
Biomarkers of Collagen Degradation and Synthesis

HIGH Degradation

Type II Collagen Degradation: uCTXII

- **Cartilage Eroded Surface**
- **Osteophyte**

Huebner, Karsdal, Kraus et al. A&R 2014

Joint tissue Degeneration & OA Progression

Synthesis LOW

Type II Collagen Synthesis: sPIIANP (pro-C2)
Key Biomarkers of Type II Collagen Degradation & Synthesis

N-terminal Propeptide
PIIANP & PIIBNP (pro-C2)

Synthesis

925 KDGP...976

CIIIM

976

PIICP

TIINE; C2C; C2-3/4C

Degradation

1235 EKGPDP

1230 CTX-II

TYPE II COLLAGEN

Adapted from Karsdal AR&T 2011
High baseline uCTX-II predicts ‘clinically relevant progression’
Pain+Radiographic Worsening over 4 years

Type II collagen degradation [IDS (AC-10F1)]
CVs 5.21%
High baseline uCTX-II predicts total joint replacements (TJR) in OA trial participants over 2 years

High baseline CTXII:
3 X higher risk of TJR (knee or hip)
9 X higher risk of TKR (knee)

Greater therapeutic window = greater possible effect size

Post hoc analysis of two clinical trials investigating oral salmon calcitonin in OA, CSMC021C2301 (NCT00486434) and CSMC021C2302 (NCT00704847)

Biomarkers of bone and cartilage turnover CTX-I and CTX-II predict total joint replacements in osteoarthritis

J.J. Bjerre-Bastos, A.-C. Bay-Jensen, M.A. Karsdal, I. Byrjalsen, J.R. Andersen, B.J. Riis, C. Christiansen, A.R. Bihlet
Low 12 month Time-Integrated-Concentration of PIINP predicts ‘clinically relevant progression’ Pain+Radiographic Worsening

Type II collagen synthesis [Merck Group/Millipore (EZPIINP-53K)]
CV 12.3%
Low baseline sPIIANP with MRI features predicts ‘clinically relevant progression’ -- Pain+Radiographic Worsening over 4 years

<table>
<thead>
<tr>
<th>Model</th>
<th>A*</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Method</td>
<td>Stepwise, SBC Imaging + Biochem</td>
<td>Stepwise, AIC Imaging only</td>
<td>Stepwise, AIC Imaging + Biochem</td>
<td>Stepwise, AIC BICL + Biochem (exclude cMFTC.THClAB)</td>
</tr>
<tr>
<td>Model Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC (unadjusted)</td>
<td>0.679</td>
<td>0.682</td>
<td>0.696</td>
<td>0.692</td>
</tr>
<tr>
<td>AUC (adjusted)</td>
<td>0.707</td>
<td>0.715</td>
<td>0.737</td>
<td>0.720</td>
</tr>
<tr>
<td>AUC (adjusted, 10 fold cross val)</td>
<td>0.670</td>
<td>0.677</td>
<td>0.697</td>
<td>0.678</td>
</tr>
<tr>
<td>IDI (vs covariates only model)</td>
<td>0.0825</td>
<td>0.0896</td>
<td>0.1090</td>
<td>0.0927</td>
</tr>
<tr>
<td>NRI (vs covariates only model)</td>
<td>0.5229</td>
<td>0.5847</td>
<td>0.5753</td>
<td>0.5613</td>
</tr>
<tr>
<td>% cases correctly reclassified</td>
<td>34%</td>
<td>34%</td>
<td>28%</td>
<td>30%</td>
</tr>
<tr>
<td>% controls correctly reclassified</td>
<td>19%</td>
<td>24%</td>
<td>29%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Biomarkers Included

Biomarkers Included				
BICL	Locations with osteophyte	Locations with osteophyte	Locations with osteophyte	Locations with osteophyte
Chondrometrics	Cart thickness: ccMF.ThClABMFTC	Cart thickness: ccMF.ThClABMFTC	Cart thickness: ccMF.ThClABMFTC eMF.ThClABMFTC	Cart thickness: ccMF.ThClABMFTC ecMF.ThClABMFTC
BiomeDIQ	Med meniscus volume	Med meniscus volume	Med meniscus volume	Med meniscus volume
Imorphics	Patella Vector of 3D shape	Patella Vector of 3D shape	Patella Vector of 3D shape	
BIOCHEM	Serum PIIANP	Serum PIIANP		

* The same set of biomarkers are chosen in the SBC imaging only analysis, and the p-value based selection (N=600) [Hunter & Kraus et al, unpub]
Low Baseline PIIBNP (Pro-C2) predicts radiographic progression

Greater therapeutic window = greater possible effect size

Non-Progressors

Progressors

CSMCO21-2301 Sub-study of oral salmon calcitonin trial NCT00486434

Yunyun Roy Luo1,2, Niamh Higgins2, Yi He2, Inger Byrjalsen2, Jeppe Andersen2, Asger Bihlet2, Morten Karsdal1, Anne C. Bay-Jensen1

1University of Copenhagen, Denmark
2Nordic Bioscience A/S, Denmark

Student’s t-test. Adjusted for BMI, sex, age, and baseline JSW
Low baseline PIIBNP (Pro-C2) predicts greater response to Oral Salmon Calcitonin

Pre-stratification

Medial JSN on signal knee (mm) (Mean with SEM)

Placebo

sCT

Post-stratification

Medial JSN on signal knee (mm) (Mean with SEM)

Placebo

sCT

Placebo

sCT

Low hsPRO-C2

High hsPRO-C2

n=44

n=31

n=35

n=37

Student’s t-test. Adjusted for BMI, sex, age, and baseline JSW

CSMCO21-2301 Sub-study of oral salmon calcitonin trial NCT00486434

Yunyun Roy Luo1,2, Niamh Higgins2, Yi He2, Inger Byrjalsen2, Jeppe Andersen2, Asger Bihlet2, Morten Karsdal1, Anne C. Bay-Jensen1

1University of Copenhagen, Denmark

2Nordic Bioscience A/S, Denmark
Linking biomarkers to clinically relevant outcomes

To qualify for accelerated approval:

A drug that treats a **serious condition** AND generally provides a **meaningful advantage over available therapies** AND demonstrates an effect on a **surrogate endpoint** that is **reasonably likely to predict clinical benefit on irreversible morbidity or mortality (IMM)** or other clinical benefit (i.e., an intermediate clinical endpoint).

Guidance for Industry: Expedited Programs for Serious Conditions – Drugs and Biologics (May 2014)

Diagram:

- **Surrogate Endpoint (Biomarker)**
- **Clinical Benefit**

Reasonably likely to predict

- Clinically relevant progression
 - uCTXII, PIIANP/PIIBNP
- Total Joint Replacement
 - uCTXII
Remaining Challenges

- Pathogenesis of OA remains complex and multifactorial;
- The heterogeneity of molecular pathways in OA may require different molecular markers;
- Unknown relationship of the magnitude of change in the biomarker to a clinically meaningful change in clinical outcome.

QUESTIONS?
Applying Biomarkers for Accelerated Approval of OA Structure Modifying Drugs

OARSI Meeting
Washington DC
May 16, 2019

Nikolay P. Nikolov, M.D.
Associate Director for Rheumatology
Division of Pulmonary, Allergy, and Rheumatology Products
U.S. Food and Drug Administration
Disclosure

• This presentation is not intended to convey official US FDA policy, and no official support or endorsement by the US FDA is provided or should be inferred

• The materials presented are available in the public domain

• I do not have any financial interest or conflict of interest with any pharmaceutical company
Outline

• Background
• Benefit-Risk Framework
• Definitions
• Considerations on Biomarkers and Accelerated Approval
• Structural Endpoints in OA: Challenges and Opportunities
• Summary
Background

• Significant public health issue, affecting over 30 million people in the US\(^1\)
• Causes significant pain and disability
• Can be a serious disease\(^2\)
• Current treatment options limited to symptomatic therapies and have toxicities
• Unmet need for therapies that would impact the natural history of OA

\(^1\) Castaneda MG, et al., Arthritis Care and Res (Hoboken), 2016 May; 68(5):574-80
\(^2\) https://www.oarsi.org/sites/default/files/docs/2016/oarsi_white_paper_oa_serious_disease_121416_1.pdf
Benefit-Risk Assessment
Basis for FDA’s regulatory decision-making

- **Benefit**: Clinical Benefit = an improvement in how a patient
 - Feels
 - Functions
 - Survives

Endpoints in trials of OA treatments need to demonstrate the clinical benefit directly or at least be interpretable with respect to the clinical benefit to be expected

- **Risk**: every therapeutic carries some degree of risk and in this framework every product is expected to show some benefit that outweighs the risk of the therapy
Outcome Measures

• Efficacy assessment
 – Clinical endpoint
 • Measures how a patient feels, functions, or survives
 – Surrogate endpoint
 • A measure expected to predict clinical benefit or harm
 – Biomarker
 • Objective measure of normal biologic process, pathogenic process, or pharmacologic response to an intervention

• Safety assessment
 – Descriptive and empiric
 – Guided by drug class, prior experience, events of interest, etc.
BEST: Biomarkers, Endpoints, and other Tools

• A glossary of terminology and uses of biomarkers and endpoints in basic biomedical research, medical product development, and clinical care
• Created by the NIH-FDA Biomarker Working Group
• BEST harmonizes terms and definitions and addresses nuances of usage and interpretation among various stakeholders

www.fda.gov
Definitions

• Clinical Outcome: An outcome that describes or reflects how an individual feels, functions or survives
 – Historically, clinical outcomes have served as direct measures of clinical benefit

• Biomarker: A defined characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Molecular, histologic, radiographic, or physiologic characteristics are types of biomarkers
 – A biomarker is not an assessment of how an individual feels, functions, or survives
Definitions

• **Surrogate Endpoint:** An endpoint that is used in clinical trials as a substitute for a direct measure of clinical benefit. A surrogate endpoint does not measure the clinical benefit of primary interest in and of itself, but rather is expected to predict that clinical benefit or harm based on epidemiologic, therapeutic, pathophysiologic, or other scientific evidence.

From a U.S. regulatory standpoint, surrogate endpoints and potential surrogate endpoints can be characterized by the level of clinical validation: validated surrogate endpoint, reasonably likely surrogate endpoint, candidate surrogate endpoint.
Section 507(e)(9) of the FD&C Act

“[t]he term ‘surrogate endpoint’ means a marker, such as a laboratory measurement, radiographic image, physical sign, or other measure, that is **not itself a direct measurement of clinical benefit**, and—

• "(A) is **known to predict clinical benefit** and could be used to support **traditional approval** of a drug or biological product; or

• "(B) is **reasonably likely to predict clinical benefit** and could be used to support the **accelerated approval** of a drug or biological product in accordance with section 506(c).”

Section 3011 of the 21st Century Cures Act established section 507 of the Federal Food, Drug, and Cosmetic Act (FD&C Act)

www.fda.gov
Accelerated Approval Considerations

• Product must be for a serious or life-threatening disease or condition

• FDA is to take “…into account the severity, rarity, or prevalence of the condition and the availability or lack of alternative treatments” when determining whether to grant approval under this program

• For drugs granted accelerated approval, postmarketing confirmatory trials are generally required to verify and describe the anticipated effect on irreversible morbidity or mortality or other clinical benefit

• Approval of a drug may be withdrawn, if trials fail to verify clinical benefit or do not demonstrate sufficient clinical benefit to justify the risks associated with the drug

Guidance for Industry: Expedited Programs for Serious Conditions, issued May 2014:
Surrogate Endpoints: Examples

• **Traditional Approval**
 - Serum uric acid (Gout)
 - Blood pressure (HTN)
 - Electrolytes (Na, K)
 - Hemoglobin A1c (DM)
 - LDL cholesterol
 - Viral load (HIV)

• **Accelerated Approval**
 - PFS, ORR (solid tumors)
 - Ig responses (Vaccines)
 - Skeletal muscle dystrophin (DMD)
 - Sputum conversion to negative (TB)
 - Viral load (HIV)

Table of Surrogate Endpoints:
https://www.fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure
Evidentiary Criteria for Surrogate Endpoints

What the law says: Discusses, in general terms, the evidence needed to support a “reasonably likely surrogate” but not a validated surrogate endpoint.

What FDA guidance documents say:

• FDA has issued a guidance document that contains fairly granular guidance on evidence that should be considered when evaluating a “reasonably likely surrogate” supporting accelerated approval.

• At present, no FDA guidance document contains a detailed discussion of the evidence needed to establish a “validated surrogate endpoint” supporting traditional approval, however FDA has stated that the standard is high.

Guidance for Industry: Expedited Programs for Serious Conditions, issued May 2014:
Assessment of Candidate Surrogate Endpoints

- **Biologic plausibility**: whether surrogate is on pathophysiologic pathway leading to clinical outcome of interest (causal? necessary intermediate?)

- **Strength and consistency of epidemiologic data supporting relationship** between surrogate and clinical outcome of interest

- **Whether treatment effects on surrogate have been shown to predict treatment effects on clinical outcome of interest** (with drugs in the same/related pharmacologic class? with drugs from distinct pharmacologic classes/ regardless of the mechanism of the intervention?)

Complex Relationships:

Disease – BM – Clin Outcome

Disease processes are complex and drugs have effects beyond those that are intended, thus...

• **Identifying the right surrogate endpoints** that can reliably or reasonably likely predict a treatment’s effect on a clinical outcome, and

• **Defining the magnitude of change** in the surrogate endpoint that would reliably predict a meaningful changes in the clinical outcome of interest

...can be a challenge
Complex Relationships:
Disease – BM – Clin Outcome

• When biomarkers/surrogate endpoints are used, there is always some **residual uncertainty** about the nature of a treatment’s benefit
 – Biomarkers may fail to predict clinical benefit, i.e. the assumption of the strength (or presence) of relationship to clinical endpoint is not valid

• Notable examples of biomarkers that performed well in identifying patients at risk for poor outcomes/progression but **failed** to predict a treatment’s effect on those outcomes:
 – HDL-C and CV outcomes
 – NSVT and death
Complex Relationships:

Disease – BM – Clin Outcome

- Correlation between a biomarker and a clinical endpoint is not **sufficient** to demonstrate that an effect on the proposed surrogate endpoint will reliably predict an effect on the clinical outcomes of interest.
- **Ideally**, this demonstration would be based on empirical evidence from randomized, controlled comparisons from clinical trials and/or on a comprehensive understanding of the disease process and drug mechanism of action.

Complex Relationships: Disease – BM – Clin Outcome

• Surrogate on **causal pathway** modulated by drug

• Biomarkers may reflect and predict changes in the clinical outcome
Complex Relationships: *Disease – BM – Clin Outcome*

- Surrogate on **causal pathway** modulated by drug
- Biomarkers may reflect and predict changes in the clinical outcome
- Surrogate **not on pathway** of drug MOA so may only indirectly correlate with outcome
- **Multiple disease MOAs** may lead to clinical outcome and drug may impact only one
Complex Relationships: *Disease – BM – Clin Outcome*

- Surrogate on **causal pathway** modulated by drug
- Biomarkers may reflect and predict changes in the clinical outcome

- Surrogate **not on pathway** of drug MOA so may only indirectly correlate with outcome
- **Multiple disease MOAs** may lead to clinical outcome and drug may impact only one

- May lead to **other toxicities** so that BM does not adequately predict benefit / risk balance
- Drug may induce **adverse effects on desired clinical outcome** through a pathway *not reflected* by BM (so net benefit of drug not reflected by change in BM)
Confirmatory Trial Considerations

• Conducting post-marketing studies to verify the benefit of drugs approved under accelerated approval can be challenging
 – Drug availability after accelerated approval may interfere with the ability to recruit and keep patients assigned to placebo from crossing over to active treatment, especially for long-term clinical trials; missing data is also a concern
• This can compromise the validity of such studies and preclude the reliable assessment of a clinical outcome for drugs approved under accelerated approval, leaving the residual uncertainties about the true clinical benefit-risk assessment of a marketed product unaddressed
Surrogate Endpoint Considerations

“Because of the substantial risk of adversely affecting the public health, if a biomarker is falsely accepted as a surrogate endpoint, robust scientific evidence is needed to justify qualification of a biomarker for use as a surrogate endpoint. There have been numerous biomarkers that represented plausible surrogate endpoints (e.g. reduced rate of ventricular premature beats following a heart attack, cardiac output in congestive heart failure, increased HDL cholesterol in patients with coronary artery disease). However, when tested in outcome trials, these biomarkers have failed to predict the expected clinical benefit. It has generally not been clear whether this represented an erroneous expectation of a relationship of the biomarker to the outcome or an unrecognized off-target effect of the drug... “

Use of Biomarkers in Drug Development

- **Context of use**: the disease setting and how the biomarker is to be used (e.g., the BEST biomarker type)
- Individual biomarkers can (eventually) serve multiple purposes, for example:
 - **Diagnostic**: cut point for diagnosis established
 - **Prognostic**: predicting likelihood of disease outcomes/complications
 - **Predictive**: predicting likelihood of response to drug
 - **Pharmacodynamic**: measures a biological response
 - **Surrogate endpoint**: response to drug predicts benefit on clinical outcome
- Use may **evolve over time**, as experience and data on course, predictive qualities, relationship to outcomes, responsiveness to treatment expands
Surrogate Endpoints: Examples

<table>
<thead>
<tr>
<th>Traditional Approval</th>
<th>Accelerated Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Serum uric acid (Gout)</td>
<td>• PFS, ORR (solid tumors)</td>
</tr>
<tr>
<td>• Blood pressure (HTN)</td>
<td>• Ig responses (Vaccines)</td>
</tr>
<tr>
<td>• Electrolytes (Na, K)</td>
<td>• Skeletal muscle dystrophin (DMD)</td>
</tr>
<tr>
<td>• Hemoglobin A1c (DM)</td>
<td>• Sputum conversion to negative</td>
</tr>
<tr>
<td>• LDL cholesterol</td>
<td>(TB)</td>
</tr>
<tr>
<td>• Viral load (HIV)</td>
<td>• Viral load (HIV)</td>
</tr>
</tbody>
</table>

Table of Surrogate Endpoints:
https://www.fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure
OA Drug Development
Current Approach of Drug Development for OA

• Drugs approved for OA to date have been approved based on patient-reported outcomes (PROs) assessing two key OA domains
 – Pain
 – Function

www.fda.gov
Patient Reported Outcomes in OA

• Examples of endpoints used in OA drug development
 – Western Ontario & McMaster Universities Osteoarthritis Index (WOMAC pain, function, stiffness)
 – Visual Analogue Scale ratings (VAS function and pain)
 – Patient global
 – Investigator’s global

• FDA is open to other PROs guided by input from patients
OA Complex Relationships:
Disease – BM – Clin Outcome

- OA is a complex and variable disease of more than just one tissue
 - Biomechanical factors, i.e. load, alignment, traumatic factors, meniscal injury, etc.
 - Genetic factors
 - Articular changes
 - Periarticular changes, bone remodeling
 - Tissue-level inflammation

- Discordance between structural changes and clinical symptoms
- No uniform definition of disease progression
Structural Outcomes in OA: Challenges

• Interruption of structural damage, preventing progressive loss of function and/or progressive increase in pain would be a substantial clinical benefit
 – Treatment may affect one of multiple pathways
 – What structural endpoint is relevant?
 – What magnitude, duration of effect on structural outcome is required?¹
 – Do on-target effects outweigh off-target effects?
 – Structural Outcomes → Biomarker, ? Surrogates

Structural Outcomes in OA: Challenges

- **Endpoints are needed** to reliably assess the ability of a product to alter the pathogenesis and the natural history of OA.
- **Knowledge gaps exist** in the ability of treatment effects on common measures of structural progression to reliably predict treatment effects on direct measures of how patients function and feel.
- To use structural outcomes in the benefit-risk assessment, we need to be able to describe the clinical benefit expected from the structural change.
Structural Outcomes in OA: Challenges

• Approaches to use of structural outcomes in OA trials will depend on level of evidence and information available to characterize clinical benefit
 – With less information, structural outcomes may still be useful as adjunct or secondary endpoints in drug development
 – To be used as the primary endpoint to support approval, a high level of characterization would be needed about the relationship of the drug-induced changes of the structural outcome to the anticipated clinical benefit
Osteoarthritis: Structural Endpoints for the Development of Drugs, Devices, and Biological Products for Treatment Guidance for Industry

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this draft document should be submitted within 60 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic comments to https://www.regulations.gov. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register.

For questions regarding this draft document, contact (CDER) Nikolay Nikolov at 301-796-5381, (CBER) the Office of Communication, Outreach, and Development at 800-835-4709 or 240-402-5010, or (CDRH) Solar Desvaux at 301-796-0182 or the Division of Hematology and Immunology Devices at 301-796-5480.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)
Center for Biologics Evaluation and Research (CBER)
Center for Devices and Radiological Health (CDRH)

August 2018
Clinical/Medical

Structural Endpoints in OA: Draft Guidance
Published in August 2018
Structural Outcomes in OA: Opportunities

• Engagement of:
 – Patients and their care givers
 – Health care professionals
 – Academics/clinical trialists/researchers
 – Industry
 – Government/regulators/payers
Structural Outcomes in OA: Opportunities

• Initial approval based on establishing efficacy on symptomatic endpoints, i.e. pain in OA
 – After the initial approval, investigate the ability of structural outcomes to predict long term clinical benefit
Structural Outcomes in OA:
Opportunities

• Study designs to assess direct clinical benefit of therapies that inhibit structural damage or target the underlying pathophysiology associated with OA
 – Composite endpoints that capture joint replacement, and “end-stage” joint disease, i.e. the severe, irreversible, intolerable pain or functional impairment
 – Enrichment strategies
 • Models of accelerated OA
 • Trials in subjects prior to knee replacement
Ways to Engage FDA for Review and Advice

IND/NDA/BLA Pathway

Within an individual drug development program

Investigational New Drug (IND) submissions to FDA

Potential to result in *labeling* statements

DDT Qualification Pathway

Outside of an individual drug development program

Development of novel outcome measures (e.g., COA, biomarker) for use in multiple drug development programs addressing unmet measurement needs

Potential to result in *qualification* of outcome measure

Critical Path Innovation Meetings Pathway

Outside of an individual drug development program

Potential for *general CDER advice* on specific methodology or technology (e.g., PRO, wearables) in its early stages of development

Meetings are informal, non-binding discussions

DDT = Drug Development Tool; PRO = Patient-Reported Outcome
NDA = New Drug Application; BLA = Biologics Licensing Application
Summary

• Establishing surrogate endpoints is a challenging, long and resource-intensive process that requires participation of many stakeholders.

• Complex relationship exists between pathophysiology, structural damages, and clinical presentation and natural history of OA.

• Ultimately, the goal of OA treatments is to provide clinical benefit to the patient.
 – Goal of clinical trials is to demonstrate this benefit.

• FDA recognizes the important public health need in OA and is open to collaborate with all stakeholders to bring safe and effective treatments for OA to market.
Key References

• OA Guidance

• OA Patient-Focused Drug Development (PFDD)

• Surrogate Endpoint Resources
 – https://www.fda.gov/drugs/development-resources/surrogate-endpoint-resources-drug-and-biologic-development
APPROVAL OF THERAPEUTICS FOR OSTEOARTHRITIS IN 2019

Lee S. Simon, MD
SDG LLC
Cambridge, MA
Consulting

Abbott, Abraxxis, AcelRx, Affinergy, Agenus, Alder, Alimera, Alpha Rx, Altea, Analgesic Solutions, Antares, Anthera, Array, Asahi, Astra Zeneca, Avanir

Bayer, CaloSyn, Cephalon, Cerimon, Daiichi Sankyo, Dara, Dr Reddys, Durect, Elcos Sciences, EMD Serono, Eupraxia, Externa, Fidelity, Flexion, Forest, Genco, Genzyme, Gilead

Hisamatsu, Horizon, Idera, Imprimis, Inmedix, Inotek, Jazz, JP Morgan, JRX Biopharm, Kiniksa, Knopp, Kowa, Leerink Swann, Lilly, Luxor, Medac, Metabolex, Neos, Nomura, Novartis, Nuvo Research

Omeros, Paraxel, Pfizer, PLx Pharma, Pozen, Proprius, pSivida, Purdue, Regeneron, Remedy, Rigel, Roche, Samumed, Sandoz, Sanofi, Shire, Takeda, Talagen Tigenix, Vical, Wyeth, XTL, Zydus
What is the Clinical Benefit from Therapy?
Osteoarthritis: The “Joint Organ”
What Are Potential Measurable Outcomes?

CLINICAL OUTCOMES

- **Biomarkers**
 - Biochemical (urinary CTXII)
 - Imaging (MRI cartilage thickness; radiographic joint space narrowing)

- **Performance**
 - Walking time/distance
 - Range of motion
 - Muscle strength

- **Clinician-Reported**
 - Global impression of severity

- **Observational**
 - Joint replacement
 - Quantity of rescue medication used for pain

- **Patient-Reported**
 - Pain
 - Function
 - Distress

Adapted from Patrick et al. 2014
Current OA Drug Development Programs

■ To date typical development program
 - Signs and symptoms
 ■ Pain
 ■ Function
 ■ Patient global

■ What is expected in structural drug development programs
 - Structural benefit must be linked in some manner with symptomatic benefit (how a patient might feel, function or survive)
 - Assess benefit to entire joint
 ■ Halt progression of damage
 ■ Reverse damage
Challenges of OA Drug Development

■ OA is multifactorial in cause
■ Unpredictable progression
 - Rapid or slow progression
■ Complex etiopathogenesis
 - A progressive disease of the whole joint:
 ■ Subchondral bone followed by effects on cartilage, with consequent increase in low grade inflammation
 - A progressive disease of cartilage
 ■ Subsequently impacting subchondral bone and consequent increase in low grade inflammation
 ■ Is it a progressive disease of abnormal cartilage sustaining normal load or normal cartilage being subjected to abnormal loading
 - All of the above?
OA: Joint Space Narrowing Progression

- Rapid
- Slow
- No change

Time

JSN
Challenges of OA Drug Development

- There is a recognized discordance between structural changes and signs, symptoms and function
- There remains a lack of standard definitions of disease progression by x-ray, MRI, or other techniques
- There remains an absence of measured endpoints to reliably demonstrate that a product alters OA disease progression
Challenges of OA Drug Development

- These complex and variable pathologic changes lead to significant pain, impaired function and ultimately to long-term disability and in some joint replacement.

- It remains unclear what magnitude of change in measured structural endpoints would translate to a clinically meaningful benefit to patients, i.e., reliably predict both reduced pain and increased function or prolonged time to end-stage disease or a composite of symptoms and TJR.
Considerations for OA Drug Development

- Accepting structural endpoints as valid outcome measures for accelerated approval
- Substantial confidence exists that a change in the proposed structural endpoint will reliably predict an effect on the clinical outcomes
 - Based on empirical evidence from randomized, controlled comparisons from clinical trials
 - Based on a comprehensive understanding of the disease process and product mechanism of action
Goals of a Structure Modifying Development Program

- The ultimate goal of treatment is to impact structural damage, specifically targeting the underlying pathophysiology associated with OA resulting in avoidance or significant delay of the complications of joint failure
 - The need for joint replacement?

- Decrease the worsening of function and pain
 - Either of these might be important clinically relevant outcomes
An Example of a Structure Modifying Trial

- Risedronate in the treatment of OA
- 23,000 patients screened with 2,300 recruited into trial for 2 years
- Signs and symptoms and fluoroscopically positioned specialized x-ray with central reading
- Post hoc small number of patients who were determined to be rapid progressors evidenced structural modification, but not able to be identified at start of trial and not linked to symptom benefit

Bingham CO III, 2006; Arthritis Rheum 54: 3494-3507
What Did We Learn from the Risedronate Trial or Other Similar Experiences?

- The trial was large and long
- It was an expensive experiment
- Some patients were measurably progressive in damage during the window of the clinical trial
- Other patients did not progress at all
- Examining the enrollment information there was no data to inform which patients would progress and which would not
What Did We Learn from the Risedronate Trial or Other Similar Experiences? (cont.)

- Some patients did benefit in terms of symptoms, but was that measured benefit associated with structural x-ray measured benefit?
- Could a single trial be powered to demonstrate both a symptomatic benefit as well as a structural benefit?
- Could structural benefit once measured be associated with a delayed clinical benefit?
Achieving Evidence for Structural Benefit Linked to Clinical Benefit

Abbreviations:
PRO: (meaningful) patient reported outcome (how a patient feels, functions, survives)
S: surrogate (biomarker)
OO: observational outcome (e.g. joint replacement)
Achieving Evidence for Structural Benefit Linked to Clinical Benefit

Regulatory approval as DMOAD based on a surrogate endpoint plus clinical endpoint

PRO + S

PRO +/- S and/or OO

1-2 years

≥ 5 years

Optional

Abbreviations:

PRO: (meaningful) patient reported outcome (how a patient feels, functions, survives)
S: surrogate (biomarker)
OO: observational outcome (e.g. joint replacement)

*Study Population contains SOME or NONE of the Original Trial subjects as a nested cohort
Conclusions

- OA has significant patient impact with pain, loss of function, consequent increased disability along with significant risk of increased mortality, in some patients
- OA affects a large population
- Developing drugs to alter the complex structures involved in the joint will be difficult
 - Target cartilage?
 - Decrease loss?
 - Stimulate new cartilage growth?
 - Target subchondral bone? And show what?
 - Both? And do changes link to how a patient feels, functions or survives?