Quadriceps Muscle and Intermuscular Fat Volumes in the Thighs of Men in the OAI are Associated with Physical Function and Knee Pain

Karen A. Beattie, Monica R. Maly, Sami Shaker, Norma J. MacIntyre
McMaster University, Hamilton, ON, Canada

BACKGROUND:

- Individuals with knee OA have lower quad muscle (QM) mass, strength vs. control

- Decreased muscle mass assoc’d with functional limitations, pain

- Muscle mass assessed by volume, cross-sectional area (CSA), MRI and CT

- Adipose tissue can also be quantified

Background:
- Role of adipose tissue in OA not well understood
- With aging, thigh intermuscular fat (IMF) CSA increases in men and women regardless of change in body mass7
- Assoc’n between IMF and physical function and symptoms in people with OA unknown

Objective:
- To investigate the association between mid-thigh QM and IMF volumes and measures of physical performance/function and pain in men participating in the OAI.
METHODS – Participant selection:

- OAI database
 - men ≥50y old
 - BL and 2y thigh MRI scans
 - incidence or progression cohorts (no control)

- Database and images further searched for:
 a) BL and 2y Kellgren-Lawrence (K-L) grades available (BU scoring), AND
 b) matching pixel spacing (BL and 2y), AND
 c) co-registered BL and 2y images (shape & 12 slices)

METHODS – MRI Scans:

- 72 randomly selected scans analyzed
- T1-weighted axial scan
- 5mm slice thickness
- 15 slices
- Most distal slice =10 cm proximal to epiphyseal line of distal femur
- 12 most proximal matching slices segmented
METHODS – Analysing MR Scans:

- Right thighs segmented - SliceOmatic v4.3 (TomoVision, Canada) using watershed algorithm\(^8\)
- Tissues “tagged” using colours
- Segmentation of first slice propagated forward, edited
- Reliability (intra-, inter-rater) ICC>0.98, RMSCV <5\(^8\)

METHODS – MR Scan Data:

- Yellow = IMF (deep to fascia, around muscles)
- Orange = QM
- Fat *within* muscle not segmented separately from muscle
- Volume of each tissue in successive 12 slices determined
METHODS – Dependent Outcomes:

- Data downloaded from OAI database:

 Self-report

 Function:
 - WOMAC Physical Function
 - KOOS Function in Sports and Recreation

 Symptoms:
 - WOMAC pain (right knee)

 Performance
 - maximum extensor force (right leg)
 - 20 m walk time

METHODS – Analyses:

- Backwards linear regression:

 - QM volume
 - IMF volume
 - Self-reported function, pain
 - Physical performance

- Covariates age, BMI and K-L grade
- SPSS v20
RESULTS:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean (SD)</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>63.3 (8.1)</td>
<td></td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>29.8 (4.1)</td>
<td></td>
</tr>
<tr>
<td>K-L Grades (N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>QM volume (cm³)</td>
<td>362.1 (65.1)</td>
<td></td>
</tr>
<tr>
<td>IMF volume (cm³)</td>
<td>121.4 (35.4)</td>
<td></td>
</tr>
<tr>
<td>WOMAC physical function</td>
<td>8.7 (10.5)</td>
<td>68</td>
</tr>
<tr>
<td>KOOS function sport & rec</td>
<td>62.9 (28.8)</td>
<td>100</td>
</tr>
<tr>
<td>WOMAC pain (right)</td>
<td>2.7 (3.1)</td>
<td>20</td>
</tr>
<tr>
<td>Max. ext. strength (right) (N)</td>
<td>442.1 (138.9)</td>
<td></td>
</tr>
<tr>
<td>20 metre walk time (s)</td>
<td>15.6 (2.3)</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS:

<table>
<thead>
<tr>
<th></th>
<th>Unstandardized β (p-value)</th>
<th>Standardized β (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOMAC Phys. Fun.</td>
<td>IMF 0.119 (0.001)</td>
<td>IMF -0.261 (0.030)</td>
</tr>
<tr>
<td>KOOS Sport/Rec</td>
<td>IMF 0.400 (0.001)</td>
<td>IMF -0.330 (0.030)</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOMAC pain (right)</td>
<td>IMF 0.026 (0.011)</td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max ext. force (right)</td>
<td>QM 1.425 (0.001)</td>
<td>IMF 0.650 (0.001)</td>
</tr>
<tr>
<td>20 m walk time</td>
<td>IMF 0.019 (0.013)</td>
<td></td>
</tr>
</tbody>
</table>

Age, BMI, K-L grade covariates not significant
LIMITATIONS:

- Did not assess whether excluded participants were “different” than those included
- Variability in location of thigh ROI
- Unable to measure intramuscular fat
- Data are cross-sectional – no indication of change over time (yet)

DISCUSSION:

- IMF volume significantly, weakly associated with physical function & performance
 - consistent with healthy aging10-12
 - consistent with women
- Knee extensor force
 - not associated with IMF volume13
 - associated with QM volume and CSA13, not K-L grade
- QM not assoc’d with function/performance

FUTURE DIRECTIONS:

- quantify longitudinal changes in IMF and QM volume, compare with women and across K-L grades
- clinical relevance of changes in IMF
- association between IMF and cartilage morphometry, JSN

Acknowledgements

- OAI investigators, OAI co-ordinating centre
- USBJD Young Investigators’ Initiative

Funding Sources

- Canadian Arthritis Network
- National Science and Engineering Research Council of Canada