Endogenous Mechanisms of Cartilage Healing

Frank Beier
fbeier@uwo.ca

http://uwo.ca/physpharm/beier/
https://twitter.com/BeierLab
Cartilage Regeneration in OA

Exogenous regeneration
Provide exogenous cells, scaffolds, molecules to the joint

Endogenous regeneration
Stimulate cells in the joint to regenerate joint tissues

Correct OA stimulus

Schulich
MEDICINE & DENTISTRY
Can cartilage regenerate?

- Evidence for precursor cells in cartilage and joint (reviewed in Jiang & Tan, NRR 2015)
- Repair of articular defects in mice is dependent on genetic background and age (Eltawil et al, OAC 2009)
Control of chondrocyte phenotype

Senescence → Precursor cell → Apoptosis → Hypertrophy

X

X

X

X
Challenges

• Can we control cartilage regeneration while preventing hypertrophy, dedifferentiation etc?

• It will not be sufficient to generate more chondrocytes; need to create the right kind of chondrocyte (e.g. superficial vs deep) and proper cartilage organization

• This will require a better understanding of how articular cartilage is formed in the first place (during development)
The TGFalpha-EGFR pathway as promoter of OA

Appleton et al., 2007
Tgfa KO mice are protected in a surgical OA model

Usmani et al., in revision
EGFR inhibition (AG1478) reduces OA severity in a rat model of OA

Sham OA OA + AG

Appleton et al., in revision
Does EGFR activation cause OA?
Cartilage-specific KO mice for Mig6
No overt phenotype in cartilage-specific Mig6 KO mice

Pest et al., 2014
Gait is unaffected in KO animals

Catwalk Gait Analysis

KO
Control

WT
KO

Schulich
MEDICINE & DENTISTRY

Western
Ectopic endochondral ossification in joint periphery of Mig6 KO knees

Control

KO

Pest et al., 2014
Increased articular cartilage thickness in cartilage-specific Mig6 KO mice
Increased articular cartilage thickness in cartilage-specific Mig6 KO mice
Articular cartilage thickness in Mig6 KO mice

Control KO

4 weeks

21 months
Articular cartilage thickness in Mig6 KO mice

36 Weeks

Control

KO

21 months

Control

KO
Cartilage markers in Mig6 KO mice

12 Weeks

A Control
SOX9

B KO
COL2A1

C KO
pEGFR
Increased chondrocyte proliferation in cartilage-specific Mig6 KO mice
Conclusions so far

• Mig6 deletion in cartilage leads to increased proliferation of articular chondrocytes and increased articular cartilage thickness in multiple joints

• This appears at odds with the catabolic function of EGFR signaling in OA – time-/context-dependent effects? EGFR-independent effects?

• Mig6 deletion leads to endochondral ossification in peri-articular tissues of the knee, but not most other joints
Is inhibition of Mig6 a potential strategy to promote articular cartilage growth?

- Post-natal KO of the Mig6 gene in cartilage
- Col2Cre-ER(T2) driver (Di Chen)
- Induction of Cre activity in chondrocytes at 3 weeks of age
What happens when we delete Mig-6 from postnatal chondrocytes?
Not much happens when we delete Mig-6 from postnatal chondrocytes
Nothing in the elbows either

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Cre (-)</th>
<th>Cre (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamoxifen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Image](image3.png)
Recombination occurs, but not in all cells

→ Different tamoxifen time course?

→ Aggrecan-CreER(T2) driver
Does deletion of TGFalpha counteract the effects of Mig6 loss?
Anabolic effects of Mig6 deletion do not require TGFalpha

\[\text{Mig}6^{fl/fl} \text{Tgfa}^{-/-} \quad \text{Mig}6^{fl/fl} \text{Col2Cre Tgfa}^{-/-} \]
Is Mig6 a potential target for cartilage repair?

- Developmental deletion of Mig6 from cartilage promotes articular cartilage growth
- Transient suppression of Mig6 signaling might be one therapeutic avenue, but it is not clear yet whether this mechanism is effective in adult cartilage
- Data indicate that this role of Mig6 in cartilage might be independent of EGFR signaling
- Mig6 suppression can also promote ectopic endochondral ossification which is detrimental to articular cartilage
- Too early to say whether Mig6 is promising target; however, it is clearly an important player in joint and cartilage biology
Acknowledgements

Beier Lab Members
- Michael Pest
- Bailey Russell
- Melina Bellini
- Dr. Guoyan Wang
- Dr. Jason Bush
- Dr. Kristyn Leitch
- Anusha Ratneswaran
- Paxton Moon
- Margaret Sun
- Katie Rabicki
- Holly Dupuis
- Dawn Bryce

Alumni
- Dr. Tom Appleton
- Dr. Shirine Usmani

Thanks
- Dr. Yu-Wen Zhang
- Dr. Jae-Wook Jeong
- Dr. Ling Qin
- Dr. Di Chen
1st Osteoarthritis Epigenetics Workshop
Amsterdam
October 20th-21st 2015

http://www.molepi.nl/research/osteoarthritis/workshop

Contacts: Ingrid Meulenbelt, Frank Beier and John Loughlin

Supported by The Dutch Arthritis Foundation and OARSI